• Title/Summary/Keyword: waterproofing-drainage system

Search Result 8, Processing Time 0.018 seconds

An Experimental Study of the Dried and Unified Execution Technology for the Sub-Organization of the Green Roofs System using the Panel of Block Type (블록형 패널을 이용한 옥상녹화 하부시스템의 건식화 $\cdot$ 일체화 시공기술에 대한 실험적 연구)

  • Moon, You-Seok;Jang, Sang-Muk;Hong, chae-ho;Cha, Yun-Jung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.119-123
    • /
    • 2007
  • Recently, the green roofs market is active, but most constructors use former waterproofing method. So there are a lot of problems in the sub-organization of the green roofs system. I studied to use the block panel for the sub-organization of the green roofs system and I tested about the effectiveness of waterproofing, root barrier, drainage, and insulation. I have not found any problems about waterproofing, root barrier, drainage, and insulation in the results. The sub-organization of the green roofs system using the block panel is effective for waterproofing, root barrier, drainage, and insulation. We can apply it to the dried and unified execution technology.

  • PDF

Practical 2-Arch Road Tunnel Design in Mountainous area (산악지형에서 효율적인 2-Arch 터널의 설계사례)

  • Jeong, Kyeong-Han;Lee, Joo-Gong;Han, Sung-Su;Hwang, Yong-Sub;Kim, Ji-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

Drainage system for leakage treatment of cement concrete structure in underground (콘크리트 지하구조물 누수 처리를 위한 유도배수시스템)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.573-585
    • /
    • 2019
  • The objective of this study is to propose the drainage system that has been improved the workability, waterproofing and drainage performance to treat the leakage from the cement concrete structures in underground. It is improved that the pipe for conveying ground leak in the existing drainage system had the problem in workability and waterproof. The drainage systems with the improved pipe for conveying ground leak were constructed in conventional concrete lining tunnels to evaluate the workability, waterproofing and drainage. The waterproof and the drainage performance of the drainage system was evaluated by injecting 1,000 ml of red water in the back of the drainage system at 3 weeks, 6 weeks, 9 weeks, 11 weeks, 14 weeks, 17 weeks and 23 weeks. During 6 months of field performance test, the average daily temperature of the tunnel site was measured from $-12.4^{\circ}C$ to $19.7^{\circ}C$. The daily minimum temperature was $-17.2^{\circ}C$ and the daily maximum temperature was $26.7^{\circ}C$. There was no problem in waterproof and drainage performance on the pipe for conveying ground leak and the drainage system during 6 months for field performance test. It is concluded that the improved drainage system can be applied to various cement concrete underground structures where leakage occurs, and has little seasonal effect.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

Development of a Drainage System to Mitigate Moisture Damage for Bridge Deck Pavements (교면포장의 수분손상 저감을 위한 체류수 배수공법 개발)

  • Lee, Hyun-Jong;Kim, Hyung-Bae;Seo, Jae-Woon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.129-140
    • /
    • 2007
  • A major purpose of this study is to develop a drainage system that can quickly drain water penetrated into pavement layers to mitigate pot holes which is one of the major distress types in bridge deck pavements. This system can be established by applying a thin drainage layer between waterproof and pavement layers. The most important elements for this system are the performance of waterproof layer and construction technique for the thin drainage layer. The porous asphalt mix with the maximum aggregate size of 10mm is first developed based on the porous asphalt mix design guide proposed by NCAT, and various physical and mechanical tests are performed to confirm that the porous mix satisfies all the specification requirements. In addition, a series of laboratory tests including low-temperature bending and bonding strength tests for the MMA(Methyl Methacrylate) type of waterproofing material. It is observed from the tests that the MMA material satisfies all the specification requirements. To evaluate the Reld performance of the drainage system, a field study has been conducted on a relatively small size bridge. The QC/QA tests are conducted on the both waterproofing and pavement materials. It has been found that the drainage system works well to drain the water penetrated into the pavement layers.

  • PDF

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

Effect of freezing and thawing on the drainage system for leakage treatment (유도배수공법에서 동결융해의 영향)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1059-1075
    • /
    • 2017
  • The objective of this study was to evaluate the freezing and thawing resistance of the existing drainage system for leakage treatment of underground concrete structures operating in cold regions. The freezing and thawing test was conducted on 4 types of drainage system specimens to evaluate the freezing and thawing resistance of the drainage system. The freezing and thawing resistance was evaluated on 4 types of Hotty-gel, as a waterproofing material, connection methods and on two methods to fix the drainage board with Hotty-gel on the surface of cement concrete specimen. One cycle of the freeze-thaw testing was 48 hours (24 hours of freezing and 24 hours of thawing), and the temperatures of freezing and thawing were at $-18^{\circ}C$ and $10^{\circ}C$, respectively. Among the 4 types of Hotty-gel connection methods, leakage occurred after 28 cycles (8 weeks) of freeze-thawing only in the Hotty-gel connection method with the 'V' groove applied to the corner of the drainage board. No leakage occurred in the 3 types of Hotty-gel connection methods. In two fixing methods, leakage occurred in the method of fixing the drainage board on the cement concrete specimen using the washer, screw and plastic wall plug. Leakage occurred at one point after 10 cycles (3 weeks) of freezing and thawing. After 28 cycles (8 weeks) of freezing and thawing, leakage point increased to 5 points. As time passed, the leak point was not increased, but the amount of leakage was increased at each leak point. The Hotty-gel connection method with cross-sectional diagonal shape was evaluated to be the highest in the production efficiency considering the production time and manufacturing method of the Hotty-gel connection shape. In the construction efficiency considering the construction time and construction method, the fixing method of air nailer, fixed nail and washer was superior to that of the washer, screw and plastic wall plug.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF