• Title/Summary/Keyword: waterproof sheet

Search Result 75, Processing Time 0.051 seconds

A Study on Examination of Application in Waste Filled Land and Performance Evaluation as Waterproofing Material by the Spray Water-Soluble Rubber Asphalt (뿜칠형 수용성 고무화 아스팔트 차수재의 성능평가 및 폐기물 매립지 적용성 검토에 관한 연구)

  • 오상근;김형무;정문정;최은수
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.165-173
    • /
    • 2001
  • This study examinated the application in construction field and the development of waterproofing material system by the spray water-soluble rubber asphalt to solve the problems of synthetic polymer sheet and gio membrane(A mat sheet of Bentonite) that had been used domestic waterproofing material in advance. As the result of study, characters of study water-soluble rudder asphalt are the follows: 1) The amount of water absorption was '0.06'g and the seepage quality was '0'g in result. 2) The tensile strength was about 30.7kgf/$\textrm{cm}^2 and the elongation was about 72.4% in result. 3) After reliance of temperature test had been ended, the tensile strength was about 72.4kgf/$\textrm{cm}^2 in low temperature and about 30.7kgf/$\textrm{cm}^2 in normal temperature. 4) After acid and alkaline treatment had been ended, the tensile strength was about 19.7kgf/$\textrm{cm}^2$ and about 21.9kgf/$\textrm{cm}^2 in result. 5) After chlorine ion treatment had been ended, the tensile strength was 28.5kgf/$\textrm{cm}^2$ and the elongation was 250% in result. 6) The impact performance was subsided at 1.5m height. 7) After promotion weathering had been ended, the tensile and elongation was about 26.0kgf/$\textrm{cm}^2, 214% in result. So, this study can propose the spray water-soluble rubber asphalt to satisfy the and durability of waste filled land.

  • PDF

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF

Numerical Study on Direct Shear Test of Composite Shotcrete with Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 직접전단실험에 관한 수치해석 연구)

  • Lee, Kicheol;Choi, Soon-Wook;Kim, Dongwook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2018
  • A sprayable waterproofing membrane which has relatively high adhesive property onto concrete enables faster construction with better waterproof performance compared with a conventional sheet membrane. However, the sprayable waterproofing membrane is a recently developed material and its performance and behavior with structures are not sufficiently reported. Therefore, in this study, the shear behavior of sprayable waterproofing membrane was numerically analyzed using the results of previous studies of composite shotcrete with sprayable waterproofing membrane. From the previous study, shear behavior of shotcrete with sprayable waterproofing membrane was different from shotcrete case and there was a limitation to express the behavior of the interface in general shear strength method. Therefore, in this study, the direct shear test was numerically simulated using two contact models, and then the best suitable method to express the shear behavior of the sprayable waterproofing membrane was suggested.

A Study on the Live Load According to Composition of the Planting Base of Green Roof (건축물 옥상녹화에 따른 식재기반구성의 적재하중에 관한 연구)

  • 김성수;서경호;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.85-90
    • /
    • 2004
  • We divided the planting bale into waterproof layer, drainage layer and soil layer so at to investigate changes of live load according to species of wood and composition of the base to make rooftops green. The results are follows, 1. As concerning construction and live load for green roof, sheet waterproofing is superior. 2. When materials of drainage are changed crushed gravel into artificial lightweight graval or ferrite, live load of planting bale is decreased about 22% and 25% in order. 3. When ingredients of soil are chased normal sand into volcanic sand, live load of base is decreased about 28%. Especially, when it is changed into ferrite, 54% of live load is decreased. 4. In this study, all live load we concerned excesses the standard about roof live load of office, school and house. Hence, structure has to be concerned thoroughly when making rooftops green. But, we judge that various methods for making rooftops green can be applied if we consider roof garden when we plan new buildings.

  • PDF

Mechanical Properties of Polyethylene/Polypropylene/Waste Tire Rubber Powder Composites (폴리에틸렌/폴리프로필렌/폐타이어고무분말 복합체의 기계적 특성)

  • Choi, Jeong-Su;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.318-323
    • /
    • 2011
  • To recycle the waste tire rubber powder, rubber powder composite for waterproof sheet was prepared, and analyzed the effect of the kind of resin and the amount of crosslinking agent on the mechanical property of the composites. The elongation-at-break of the PE composite increased more than 3 times as EPDM was added into rubber composites. As the content of the crosslinking agent increased, the tensile strength of composite increased as well. When recycled polypropylene was used, the increase in composite's tensile strength was more than 3 times. Therefore to use the recycled PP in composite is more effective rather than PP in term mechanical properties.

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : II. Experimental Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파 병행기법 : II. 실험적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.271-283
    • /
    • 2002
  • P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects in Impact-Echo(IE) method. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. In numerical studies(Part I), it was verified that P-wave velocities could be obtained from SASW. In this paper(Part II), experimental studies were made in slab type concrete model specimens in which voids and waterproof sheet were included at the known locations. Accordingly, the feasibility of the proposed method was evaluated. The IE-SASW method was also performed in the precast model tunnel on ground and open-cut tunnel in ground. SASW tests were performed to determine the P-wave velocity of the concrete and then IE tests were carried at regularly spaced points along the testing lines to determine the thickness of structures. The nondestructive testing method which combined SASW and IE tests showed the great potential in the field applications.

Experiment for the Performance Improvement of Eco House Provided by Habitat for Humanity Nepal(HfH_Nepal) - Case Study of Terai Plain Region, Nepal - (네팔 해비타트(HfH_Nepal) 생태주택 보급현황과 성능개선실험 연구 - 떠라이 평원지역을 중심으로 -)

  • Leem, Youn Taik
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.103-112
    • /
    • 2013
  • The Federal Democratic Republic of Nepal(Nepal) is one of the poorest country in the world. People in Nepal are having lots of housing problems including the lack of housing provision. Even Habitat for Humanity Nepal (HfH_Nepal) has developed various programs to diffuse ecological housing, still there are many problems due to financial and technological shortage. The purpose of this study is to verify the effects of suggestion of performance improvement for HfH_Nepal eco house with introduction of the housing situation and efforts to provide sustainable housing by HfH_Nepal in Terai plain. Ideas on CGI sheet roof with poor insulation, double panel bamboo wall and adobe brick wall which can overcome structural and waterproof flaws of the thin single panel bamboo wall. The experiment result shows that both ideas adapted to adobe brick house reduces daily temperature range 50.8% and humidity adjust effect. For the effective provision of adobe brick house, compressive strength was tested for the bricks made with locally available fiber materials. Brick with jute displayed 41.1% betterment than plain brick with closest packing condition while coconut and straw showed 25.1% and 7.9% improvement respectively. Technical and economic problems brought up during the building and experiment process were listed and countermeasures established. This kinds of building prototype houses and experiments can improve the living conditions of people in developing countries with little supplement of resources. Furthermore, consideration of locally available and affordable material can help the social and ecological sustainability in the world.

Performance Evaluation for the Application of Roof Green Box Unit System Combined with Engineering P.E.Waterproof and Root Penetration Sheet (엔지니어링 PE방수.방근시트가 결합된 박스 유닛형 옥상 녹화 시스템 적용을 위한 성능평가)

  • Oh, Chang-Won;Hong, Jong-Chul;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • According to the increment of urban buildings, the demand of eco-environment space will be also increased. Therefore, the artificial ground green system on a roof will be supplied gradually. In this study, the concept of simplification, unification and prefabrication was widely applied to supply green system. Consequently, the box unit system with a continuous soil layer was developed, and adhesive property, wind resistance and insulation property of this system were evaluated for site application. As a results of adhesive property and wind resistance test, comparing with design wind pressure and wind velocity, this system was safe at the height of 100m building located in urban. In addition, results of temperature measurement for 120 days showed 17% higher insulation property at daytime and 45% higher insulation property at night than normal box unit system owing to continuous soil layer.

A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The sprayable waterproofing membrane is installed between shotcrete to provide crack bridging and hence prevent flow of liquid water as a waterproofing system. Because of its material characteristics, the sprayable membrane can be constructed at more complex structure than sheet membrane. The main component of the sprayable waterproofing membrane is a polymer-based material, therefore, moisture can migrate through sprayable waterproofing membrane materials by capillary and vapor diffusion mechanisms. The moisture transport mechanisms can have an influence on the degree of saturation and may influence the pore pressure and risk of freeze-thaw damage on concrete linings and membrane. In this study, long-term hygrothermal behavior was simulated with considering moisture transport and long-term effects on saturation of tunnel linings. From the simulation, due to water absorption and vapor transport properties of sprayable membrane, change of relative humidity and water content in tunnel lining can be evaluated.