• Title/Summary/Keyword: waterlogged soil

Search Result 25, Processing Time 0.021 seconds

Water logging tolerance of Indonesia chili pepper

  • Higashi, Airi;Suwignyo, Rujito Agus;Sakagami, Jun-Ichi;Yabuta, Shin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.281-281
    • /
    • 2017
  • Recently, global warming by greenhouse gas effect is getting danger and danger for human life and agriculture at present. In Indonesia, according to heavy rain in the agriculture land is often covered by excess water in result crop growth would be affected negative. This water stress triggers roots failure in anaerobic condition for upland crop because of limiting roots respiration. Chili pepper grows in upland sometimes in touch with waterlogging due to rainfall and /or over flow water from river in Indonesia. In this case, roots growing is inhibited by effect of shortage of oxygen at root cap. Therefore, the objective of this study is to observe the plant behavior in waterlogging using mahor local genotypes (Ferosa, Laris, Romario) in Sumatra. The experiment was kept by at 1cm depth water above the soil surface as a waterlogged treatment for ---days. As a result, waterlogging affected plant growth of chili negatively, especially for roots growth. Almost roots were getting bad and changed color for brown during waterlogging. A significant negative effect for nutrient absorption by roots was found in dry weight of all varieties during waterlogging. Dry weight of roots was decreased by 81.4% and 67.6%, and those of aerial part decreased by 74% and 67.2% compared with control in Ferosa and Romario at 1week after treatment. On the other hand, dry weight of roots was decreased only 35% in Laris. Therefore, Laris has a tolerance for waterlogging compared to with other varieties. Also, Laris in SPAD value was kept initial level during waterlogging however those of Ferosa and Romario decreased. Finally, due to impact of waterlogging, it may be the roots become failure because of less aerenchyma formation under anaerobic condition. We need confirm aerenchyma formation morphologically in the future.

  • PDF

The Effect of Lime and Wollastonite on an Acid Sulfate Soil (특이산성토에 대한 석회 및 규회석의 효과)

  • Park, Nae Joung;Park, Young Sun;Lee, Kyu Ha;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1972
  • The effects of limestone and wollastonite on an acid sulfate soil were studied. In addition, the effect of wollastonite was analyzed in terms of those due to calcium and to silica in the paddy field and in the laboratory with equivalent amounts of lime and wollastonite on a calcium basis. 1. Lime and wollastonite as liming materials were equally effective in neutralizing the soil acidity. 2. Lime, however was more reactive, raising the pH up to neutralization point in three days under waterlogged conditions at $25^{\circ}C$, in the lab study, and introduced alkali damage to transplanted rice seedlings showing marked restrictions of tillering in the field even though lime was applied two weeks before transplanting. On the other hand, wollastonite reacted very slowly, taking one week to two weeks to reach neutralization even when thoroughly mixed, and did not restrict the tillering. 3. Both lime and wollastonite effectively reduced the toxic aluminium in soil as well as in the soil solution but not always in the case of ferrous iron. However the reduction effect of the toxic substances in the experimental field was not so great as expected, because typical toxic symptoms were mild only. 4. Lime considerably increased the availability of silica in soil resulting in an increase of silica content in straw. Wollastonite released extra available silica itself resulting in a greater uptake of silica. 5. Increase of silica uptake by these materials was effective in reducing rate of infection of neck blast and resulted in higher rate of ripening, and in turn increased the paddy yield. 6. Application of either one significantly diminished the effect of the other. 7. Wollastonite markedly increased tillering in the early growing stage, but decreased the rate of effective tillers finally, resulting in about the same number of ears per hill at harvesting. 8. These liming materials appear to increase the number of grains per panicle slightly.

  • PDF

A study for conservation of plant-based cultural properties : on the subject of straw sandals excavated at Goongnamji in Buyeo (초본류 문화재의 보존처리를 위한 연구 -부여 궁남지 출토 짚신을 대상으로-)

  • Na, Mi-Sun;Kim, Ik-Joo;Kim, Soo-Ki
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-130
    • /
    • 2004
  • Plant-based cultural assets using straw and grass as household goods of our people's have been used as indispensable tools for practical living for a very long time. However, only a limited number of artifacts were unearthed so far due to tile fragility of the material. For this reason, research on plant-based cultural properties had close to no progress, and the appropriateness of the PEG method, high-grade alcohol method, alcohol--ether-resin method, and Paraloid B-72 used in preserving plant-based cultural properties has not been sufficiently investigated. Therefore, this study examined the weight change rate by applying the methods of Primal MC-76 and vacuum freeze-drying used mostly as a earth-layer hardening material among PEG and acrylic resin, which are applied widely for preservation of waterlogged archaeological wood, as a means to preserve plant-based cultural properties along with the examination of the subject material, and an experiment was also performed on moisture absorption. The findings as a result were, first, the plant-based material being studied was found to be Typha (Typha orientalis Presl). Secondly, the weight change experiment applying $PEG\#400$ and $PEG\#4000$ confirmed a steady increase of weight if PEG -2Step is used for treatment. Third, in preserving all subject materials with soil, treatment with $PEG\#4000$, Primal MC-76, and vacuum freeze-drying showed that tile vacuum freeze-drying method resulted in the largest or $20\%$ reduction in weight, while Primal MC-76 resulted in $18\%$ and $PEG\#4000$ in $8\%$ of weight reduction. It was concluded that, considering the stability of soil measurement, this came to be because resin permeation was carried out along with tile drying process. Fourth, the weight changes were found to be around $10\%$ in various humidity conditions after the preservation treatment. The greatest weight change rate was seen in the case of $PEG\#4000$, particularly having chemicals gush out in a high humidity (RH $84\%$ or higher) environment. In the case of Primal MC-76 and vacuum freeze-drying methods, $6\~8\%$ weight changes were detected, and the lowest weight change was found in the case of the vacuum freeze-drying method. Fifth, as for color changes after treatment, blackening occurred most strongly with $PEG\#4000$, while Primal MC-76 and vacuum freeze-drying manifested colors closest to dry straw or grass. However, the texture of straw was not very evident in the case of Primal MC-76, due to a glossy surface, but vacuum freeze-drying was found to offer tile best result in terms of texture. Putting together the results of the above experiments, vacuum freeze-drying presented after being treated with PEG2-Step the most stabilized changes in weight, while it offered the smallest change in color as well.

  • PDF

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes (토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.

Changes of Leaf Nitrogen and Petiole Ureide Content in Soybean [Glycine max (L.) Merrill] under Waterlogging Condition (과습에 따른 콩 엽 질소농도 및 엽병의 ureide 함량 변화)

  • Lee, Jae-Eun;Kim, Hong-Sig;Kwon, Young-Up;Jung, Gun-Ho;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.385-393
    • /
    • 2011
  • Soybean is the most promising crop for substituting rice on the paddy field. Excessive water stress is a common limiting factor in soybean yield under paddy soil condition. This study was carried out to identify changes in leaf total nitrogen and petiole ureide content under excess water conditions for establishing a screening system related to waterlogging tolerance. Waterlogging treatment was conducted by maintaining the water level on the soil surface for 10 days at the early vegetative growth stage ($V_5$) and the flowering stage ($R_2$). Leaf total nitrogen content, SPAD value and ureide content in petiole decreased in all soybean varieties in response to waterlogging, but the degree of decrease was much lesser in Pungsannamulkong and Muhankong than in Jangyeobkong and Myungjunamulkong, at 21 days after waterlogging treatment. This result means that root and nodule recovery rates were much higher in Pungsannamulkong and Muhankong than in Jangyeobkong and Myungjunamulkong after waterlogging treatment. The ureide and leaf nitrogen content showed high positive correlation with SPAD value, regardless of waterlogged stages. In conclusion, leaf nitrogen content, ureide content in petiole and leaf greenness were identified as promising indicator for screening soybeans which are tolerant of excess water.