• Title/Summary/Keyword: waterjet

Search Result 97, Processing Time 0.038 seconds

Performance Test and Model-Ship Correlation for a Waterjet Propulsion System (실선 물분사 추진장치 성능시험 및 모형선-실선 상관관계)

  • Jong-Woo Ahn;Chang-Yong Lee;Young-Ha Park;Jong-Ahn Chung;Byung-Hyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.11-18
    • /
    • 1998
  • This study describes sea trial tests for a waterjet propulsion system attached in the hybrid super high speed cargo ship named "Narae". A measuring technique of jet velocity, gross thrust and impeller torque for the waterjet system is explained. From the measured data in sea trial test, performance of the waterjet propulsion system is analyzed and compared with model test results of a similar waterjet system which was carried out in 1996. The erective horse power estimated from sea trial tests shows a good agreement with resistance test results of the model ship. The optimum rising height is estimated as 0.75 m, and the overall efficiency of the waterjet system is predicted as 0.315 at 15 knots. Useful data such as the pump performance, the jet efficiency, the losses of inlet duct and nozzle were obtained. Test results show a similar behavior to the model test results.

  • PDF

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

Analysis of rock removal shape according to overlapping width of waterjet cutting (워터젯 절삭폭 중첩에 따른 암반제거 단면형상 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Park, Jun-Sik;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.167-181
    • /
    • 2021
  • New type of rock excavation method using a waterjet system is being developed to secure economic feasibility and to reduce vibrations during excavation. In waterjet rock excavation, overlapping of cutting width is essential for high efficiency. In this study, cutting experiments for granite specimens were performed using abrasive waterjet system according to the overlapping ratio and standoff distance. Based on the experimental results, the granite cutting performance was analyzed according to the overlapping ratio. In addition, removal shapes of the cross-section were analyzed in terms of the cutting depth, width, and volume after waterjet cutting. When the overlapping ratio is less than 58%, rock specimens are partially removed due to the insufficient overlapping ratio. However, when the overlapping ratio exceeds 67%, overcutting phenomenon is observed. For the partial overlapping ratio (i.e., 25~75%), cutting efficiency is increased in the removal volume. This study is expected to be used as the important basic data for determining the optimum overlapping ratio when the waterjet system is applied for rock excavation.

Nozzle Condition Monitoring System for Abrasive Waterjet Process (연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계)

  • Kim, Jeong-Uk;Kim, Roh-Won;Kim, Chul-Min;Kim, Sung-Ryul;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

Application Study on FMEA(Failure Mode and Effect Analysis) for Waterjet-lifter of Deep-Sea Manganese Nodule Miner (심해저 망간단괴 집광시스템의 물제트부양장치에 대한 FMEA 적용 연구)

  • Choi, Jong-Su;Hong, Sup;Lee, Tae-Hee;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • An FMEA for the waterjet-lifter of a DSNM is performed to prevent the occurrence of device failure. A waterjet-lifter raises and transports manganese nodules from the deep-sea floor up to a somewhat elevated place, from which a pin-scraper transports the lifted nodules to the inner space of the DSNM. A concept design for a device using the axiomatic design methodology is shown as the mapping between the functional domain and physical domain. The FMEA for a DSNM is introduced briefly and the rating criteria of severity, occurrence, and detection for the DSNM are defined. The FMEA of the functional requirements of a DSNM device is accomplished. Three kinds of failure modes, as well as their effects and causes, are predicted. Current design control methods for detecting potential failures, such as physical or computational experiments, design confirmation, and mathematical calculation, are described and the recommended actions for several significant causes are suggested.

Flow and Performance Analysis of Waterjet Propulsion System (워터제트 추진시스템의 유동 및 성능 해석)

  • Park Warn-Gyu;Jang Jin-Ho;Chun Ho-Hwan;Kim Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.8-14
    • /
    • 2004
  • The numerical analysis of a waterjet propulsion system was performed to provide detail understanding of complicated flow phenomena including interactions of intake duct, rotor, stator, and contracted discharge nozzle. The incompressible RANS equations were solved on moving multiblocked grid system. To handle interface boundary between rotor and stator, the sliding multiblock method was applied. The numerical results were compared with experiments and good agreement was obtained. The complicated viscous flow features of the waterjet, such as secondary flow inside the intake duct, the recovery of axial flow by the role of the stator, and tip and hub vortex, etc. were well analyzed by the present simulation. The performance of thrust and torque was also predicted.