• Title/Summary/Keyword: waterborne polyurethane (WPU)

Search Result 27, Processing Time 0.025 seconds

Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

  • Jin, Chung Keun;Lim, Sung Hyung
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.207-212
    • /
    • 2015
  • The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

Preparation of Waterborne Polyurethane/Silica Nanocomposites Using Tetraethylorthosilicate (Tetraethylorthosilicate를 사용한 수분산 폴리우레탄/실리카 Nanocomposite의 제조)

  • Shin, Yong Tak;Hong, Min Gi;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.428-433
    • /
    • 2010
  • Waterborne polyurethane(WPU) was synthesized from isophorone diisocyanate(IPDI), poly(tetramethylene glycol)(PTMG), dimethylol propionic acid(DMPA), triethylamine(TEA), ethylenediamine(EDA) and 3-aminopropyl triethoxysilane(APS) as a coupling agent. Subsequently, WPU/silica nanocomposites with different silica contents(0 to 8 wt%) were prepared by performing sol-gel reactions with tetraethylorthosilicate in the WPU matrix. The average particle size of the nanocomposite solutions increased with increasing TEOS content. Also, the prepared nanocomposites showed better thermal stability than pure WPU.

Preparation of Graphene/Waterborne Polyurethane Nanocomposite through in-situ Polymerization (In-situ 중합을 통한 그래핀/수분산 폴리우레탄 나노 복합체 제조)

  • Cha, Ji-Jung;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.507-512
    • /
    • 2013
  • A graphene/waterborne polyurethane (WPU) nano composite was prepared by in-situ polymerization of PU and graphene having isocyanate (iGO) group in order to improve physicochemical/electrical characteristics. The properties of the graphene/WPU nanocomposite can effectively be enhanced as compared pristine WPU; up to 57% of tensile strength and $10^2$ fold of electrical conductivity with introduction of 2 wt% graphene. In addition, mechanical/electrical properties of the graphene/WPU nanocompsite were higher than those of graphene/WPU composite prepared by a simple physical blend method. It might attribute to homogeneous dispersion of iGO in the WPU matrix via covalent bonds and hydrogen bonds between WPU and iGO from the results of morphological analysis by scanning electron microscopy (SEM).

A study on Mechanical properties of Waterborne polyurethane dispersion by Monoammonium phosphate (Monoamonium Phosphate를 이용한 수분산 폴리우레탄 수지의 합성과 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we have synthesized waterborne polyurethane dispersion(WPU) and analyzed mechanical properties of WPU film and leather coatings in different content of monoammonium phosphate. According to the measured data by DSC, sample WPU-AM3 which included high content of monoammonium phosphate showed the highest Tm at $382^{\circ}C$. All samples had good solvent resistance. In tensile tests, WPU-AM3($2.130kg_f/mm^2$) had the lowest physical properties. Also abrasion resistance properteis and elongation properties were investigated, WPU-AM3 had lowest physical properties with 52.07 mg.loss for abraison and 615 % of elongation.

Synthesis and Hydrolysis-Resistance Characterization of Waterborne Polyurethane (Waterborne Polyurethane의 합성 및 내가수분해 특성 연구)

  • Jeong, Booyoung;Cheon, Jungmi;Chun, Jaehwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.116-120
    • /
    • 2012
  • In this study, waterborne polyurethane was prepared from polyester polyol, $H_{12}MDI$, DMPA and sulfopropylated polypropyleneglycol-${\alpha}$,${\omega}$-diamine (SP). The $T_g$ of waterborne polyurethane was increased as the SP content increased, while it was decreased at the NCO/OH ratio of 1.8. Also the hydrolysis-resistance and tensile strength were increased as the SP content increased. The tensile strength decrement of WPU-SP was 2~5% with the exception of WPU-SP-1.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

The Effect of Double-mixed Particle Size Distribution on the Properties of Waterborne Polyurethane Resin (이중혼합 입자 크기 분포 효과에 따른 수분산 폴리우레탄 수지의 특성 변화 연구)

  • Jo, Kyoung-Il;Ko, Jae-Wang;Kim, Il-Jin;Lee, Jin Hong;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.261-271
    • /
    • 2022
  • Waterborne polyurethane(WPU) is greatly affected by its properties depending on the average particle size. In this study, by analyzing the characteristics of WPUs with different average particle sizes according to the DMPA content and we confirmed that the WPU-Ms have different properties from the physical properties of WPU by mixing two types of WPU with different particle sizes in the same volume. At this time, we mixed WPU at an ideal ratio of 7:3 through literature research. In the thermal characteristic analysis, it was confirmed that the thermal decomposition temperature decreased and Tg increased as the content of DMPA, which is the hard segment, increased. In addition, the average particle size of WPU decreased as DMPA increased, and physical properties and adhesive strength were improved due to increased interaction. When mixed with each other in a weight ratio of 7:3, it was observed that adhesion and mechanical properties were improved compared to only WPU.

Preparation and Properties of Waterborne Polyurethanes Based on Mixtures of Hydroxy-Terminated Polybutadiene and Poly(propylene glycol) (수산기말단 폴리부타디엔/폴리 (프로필렌 글리콜) 혼합물을 이용한 수분산 폴리우레탄의 제조와 물성)

  • Lee Seon-Suk;Lee Si-Ho;Lee Dai-Soo
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.152-157
    • /
    • 2006
  • Anionic or Zwitter-ionic waterbone polyurethanes (WPU) based on mixtures of hydroxy terminated poly-butadiene and poly(propylene glycol) were prepared and their physical properties were characterized. Particle size of WPU increased with increasing the content of HTPB. It was observed that the microphase separation of soft segments and hart segments increased with increasing the content of HTPB in the WPUs. Zwitter-ionic WPU showed stronger hydrogen bonds between molecules than anionic WPU after drying. Polyurethane films obtained after drying of WPUs exhibit besmechanical properties when the HTPB content among polyols for WPUs were 25wt%. It is postulated that such mechanical properties resulted from different microphase separation of soft segments and hard segments of polyurethane films obtainec after drying of WPUs.

Improvement of Physicochemical Properties of Waterborne Polyurethane/Poly(3,4-ethylenedioxythiophene) Hybrid Thin Films (수분산 Polyurethane/Poly(3,4-ethylenedioxythiophene) 혼성 필름의 물리화학적 특성 향상)

  • Ko, Young Soo;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.587-591
    • /
    • 2013
  • Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is the improvement of physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the anionic type waterborne polyurethane (WPU) chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/WPU organic-organic hybrid conductive thin films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and WPU portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a decreasing tendency with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked WPU due to curing reactions between carboxyl groups.

The Effect of Improved Crosslink Density on the Properties of Waterborne Polyurethanes Using Sol-Gel Process (졸-겔 법을 통한 수분산형 폴리우레탄 합성 및 가교밀도 개선에 따른 성능 연구)

  • Kim, Young Ryul;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.297-302
    • /
    • 2016
  • Water-based systems are dominating the coating market because of worldwide VOCs regulations. Research is focusing especially on waterborne polyurethane (WPU) because of its unique mechanical and chemical properties. However, commercial WPU consists of linear thermoplastic polymers with polar groups on the main chain, which do not perform as well as solvent-borne PU in a two-pack system. In this study, APTES were used as a chain crosslink agent to overcome commercial WPU's limited performance. WPUs synthesized by using a sol-gel process were evaluated with FT-IR, particle analysis, TGA, tensile tests, pull-off tests, SEM, and EIS. The results showed that WPUs with added APTES had better thermal stability, mechanical properties, and water resistance than did WPUs without added APTES. Consequently, the sol-gel process increased the crosslink density of WPUs and modified the WPU's own properties.