• 제목/요약/키워드: water-splitting reaction

검색결과 86건 처리시간 0.03초

접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산 (TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM)

  • 권해성;오상준;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

이산화탄소 변환 과정이 포함된 인공 광합성 시스템 (Artificial Photosynthesis System Containing CO2 Conversion Process)

  • 김기범
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.63-68
    • /
    • 2018
  • 본 논문은 이산화탄소 고정 과정이 포함된 인공 광합성 과정을 모사하기 위하여 지구상에 흔히 존재하는 촉매 재료를 이용해 개발한 광화학 반응 시스템(인공나뭇잎)과 시스템 에너지 포집 및 변환 능력에 대한 성능을 조사하기 위한 기초 연구 결과를 제시한다. 본 연구에서 개발한 시스템은 태양광 전지의 전면부에 산화코발트를 도핑 하여 물의 전기분해로 인한 산소 발생이 태양전지 표면에서 직접 발생하도록 하였고, 후면 기판 표면에는 이산화탄소 변환 반응을 위한 효율적인 촉매로 $MoS_2$를 도핑 하여, 전선이 없는 구조로 구성하였다. 직접 태양광 연료 변환 시스템은 약4.5%로 이산화탄소를 일산화탄소와 수소로 변환하여 지속 가능한 연료(합성가스)의 형태로 생산하며, 이는 음극에서 촉매 변환 효율이 75%이상이 될 수 있음을 의미한다. 본 연구는 물의 광분해뿐만 아니라 태양광에 의해 유도된 이산화탄소 전환 과정을 하나의 시스템에서 동시에 실현하여 자연적 광합성 과정을 좀 더 성공적으로 모사할 수 있는 시스템 개발에 기여하였다.

Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam

  • Lee, Jung-Il;Oh, Seong Gyun;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Kim, Ji Hyeon;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2021
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. We report effects of incorporation of metalloid into Ni(OH)2 microcrystal on electrocatalytic activities. In this study, Te incorporated Ni(OH)2 (��Te-Ni(OH)2) were grown on three-dimensional porous NF by a facile solvothermal method with �� = 1, 3 and 5. Homogeneous microplate structure on the NF was clearly observed for the Ni(OH)2/NF and ��Te-Ni(OH)2/NF samples. However, irregular and collapsed nanostructures were found on the surface of nickel foam when Te precursor ratio is (��) over 3. Electrocatalytic OER properties were analysed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Te incorporation used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Te amount (��) introduced into the Ni(OH)2/NF was discussed with respect to their OER performance.

페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성 (Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums)

  • 차광서;이동희;조원준;이영석;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.140-150
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syngas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums. The mediums, CoFZ, CuFZ, or MnFZ, were composed of the mixture of M(M=Co, Cu or Mn)-substituted ferrite as an active component and $ZrO_2$ as a binder, respectively. The WZ medium, composed of the mixture of $WO_3$ and $ZrO_2$, was also prepared to compare. With an addition of $ZrO_2$, the surface area of the mediums was slightly increased and the sintering of active components was greatly suppressed during the reduction. The higher reactivity of the reduced mediums for water splitting was confirmed by the temperature programmed reaction. From the results of the thermochemical 2-step methane reforming, the reactivity of $CH_4$ reduction and water splitting with ferrite-based metal oxide mediums was relatively higher than that with WZ, and the order of reactivity of the mediums was MnFZ>CoFZ>CuFZ>WZ.

지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구 (Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production)

  • 김우진;강경수;김창희;조원철;강용;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성 (Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties)

  • 조경원;채희라;류정호
    • 한국결정성장학회지
    • /
    • 제32권2호
    • /
    • pp.77-82
    • /
    • 2022
  • 고효율의 수전해 촉매는 낮은 전압에서 빠른 속도로 산화반응이 가능하기에 반응 활성이 높은 촉매설계 및 제조 공정이 필요하다. 현재 귀금속 촉매가 산소 발생 반응 성능에 있어서 우수한 특성을 보여주고 있지만 높은 가격과 낮은 반응성에 의한 효율 한계성으로 인해 상용화에 큰 어려움을 겪고 있다. 최근 귀금속 촉매를 대체하기 위해 저비용/고효율 수전해 촉매 개발연구가 활발하게 진행되고 있는데, 본 연구에서는 가격적인 측면에서 부담이 적고 산소활성 반응이 뛰어난 니켈 금속과 전기전도성이 뛰어난 multi walled carbon nanotube(MWCNT)를 이용하고 pulsed laser ablation in Liquid(PLAL) 공정을 적용하여 MWCNT 구조내에 Ni 을 성공적으로 dopping하여 Ni-MWCNT 촉매를 제작하고자 하였다. High resolution-transmission electron microscopy(HR-TEM) 분석 및 X-ray photoelectron spectroscopy(XPS) 분석을 통하여 개발된 수전해 촉매의 구조 및 화학적 조성을 확인하였으며, 촉매 산소발생반응 평가는 선형 주사 전위법(Linear sweep voltammetry; LSV) 과전압 특성, 타펠 기울기(Tafel slope), 전기화학 임피던스 분광법(Electrochemical impedance spectroscopy; EIS), 순환 전압 전류법(Cyclic voltammetry; CV) 및 Chronoamperometry(CA) 측정법으로 진행하였다.

Self-Assembled Peptide Structures for Efficient Water Oxidation

  • Lee, Jae Hun;Lee, Jung Ho;Park, Yong Sun;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2013
  • In green plants, energy generation is accomplished through light-harvesting photosystem, which utilize abundant visible light and multi-stepwise redox reaction to oxidize water and reduce NADP+, transferring electrons efficiently with active cofactors1. Inspired by natural photosynthesis, artificial solar water-splitting devices are being designed variously. However, the several approaches involving immobilization2, conjugation3, and surface modification4 still have limitations. We have made artificial photosynthesis templates by self-assembling tyrosine-based peptide to mimick photosystem II. Porphyrin sensitizer absorbing blue light strongly was conjugated with the templates and they were hybridized with cobalt oxide through the reduction of cobalt ions in an aqueous solution. The formation of hybrid templates was characterized using TEM, and their water oxidation performance was measured by fluorescence oxygen probe. Our results suggest that the bio-templated assembly of functional compounds has a great potential for artificial photosynthesis.

  • PDF

폴리이미드의 탄화 처리에 의한 SiC 분리막의 가스투과 특성 (Gas Permeation Characteristics of the Prepared SiC Membrane through Polyimide Carbonization Treatmemt)

  • 최호상;황갑진;강안수
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.66-70
    • /
    • 2005
  • IS 프로세스의 HI 분해 반응에서의 적용을 위해 고분자재료(폴리이미드)를 이용하여 탄화 막을 제작하고, 이 탄화막에 SiO를 처리함으로써 SiC 막을 제작하였다. 폴리이미드의 탄화에 의한 중량 감소는 약 50% 정도이고, 탄화 온도가 증가할수록 중량감소도 증가하였다. 탄화막은 탄화온도가 상승하면 가스 투과속도가 감소하고 막의 치밀화가 진행되었다. SiC 막은 SiO의 처리 농도가 증가하면 가스 투과 속도는 증가하고, 기체 투과 메커니즘은 활성화에너지 흐름에서 Knudsen 흐름으로 변화한다는 것을 알 수 있었다.

광전기화학 물분해 수소 제조 기술에서 수소화효소 엔자임 활용 (Hydrogenase Enzyme for Photoelectrochemical Hydrogen Production from Water Splitting)

  • 조혜경;정현민;윤재경;이광복;김한성;주현규
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.507-514
    • /
    • 2022
  • There is growing interest in sustainable energy sources that can reduce fossil fuel dependence and environmental pollution while meeting rapidly growing energy demands. Hydrogen have been investigated as one of the ideal alternative energies because it has relatively high efficiency without emitting pollutants. The light-sensitized enzymatic (LSE) system, which uses hydrogenase-enzymes, is one of the methods towards economically feasible system configurations that enhance the rate of hydrogen generation. Hydrogenase is an enzyme that catalyzes a reversible reaction that oxidizes molecular hydrogen or produces molecular hydrogen from protons and electrons. In this paper, utilization of [NiFe]-hydrogenase (from Pyrococcus furiosus) in photoelectrochemical hydrogen production system such as handling, immobilization, physicochemical and electrochemical analysis, process parameters, etc. was introduced.