• Title/Summary/Keyword: water-soluble ions

Search Result 136, Processing Time 0.03 seconds

Assessment of Groundwater Quality for Irrigation and Agro-based Industrial Usage in Selected Aquifers of Bangladesh

  • Rahman, Md. Mokhlesur;Hoque, Syed Munerul;Jesmin, Sabina;Rahman, Md. Siddiqur;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • Groundwater sampled from 24 tube wells of three districts namely Sherpur, Gaibandha and Naogaon in Bangladesh was appraised for their water quality for irrigation and agro-based industrial usage. All waters under test were slightly alkaline to alkaline (pH = 7.2 to 8.4) in nature and were not problematic for crop production. As total dissolved solid (TDS), all groundwater samples were classified as fresh water (TDS<1,000 mg/L) in quality. Electrical conductivity (EC) and sodium adsorption ratio (SAR) values reflected that waters under test were under medium salinity (C2), high salinity (C3) and also low alkalinity (S1) hazard classes expressed as C2S1 and C3S1. As regards to EC and soluble sodium percentage (SSP), groundwater samples were graded as good and permissible in category based on soil properties and crop growth. All water samples were free from residual sodium carbonate (RSC) and belonged to suitable in category. Water samples were under soft moderately hard, hard and very hard classes. Manganese, bicarbonate and nitrate ions were considered as major pollutants in some water samples and might pose threat in soil ecosystem for long-term irrigation. For most of the agro-based industrial usage, Fe and Cl were considered as troublesome ions. On the basis of TDS and hardness, groundwater samples were not suitable for specific industry. Some water samples were found suitable for specific industry but none of these waters were suitable for all industries. The relationship between water quality parameters and major ions was established. The correlation between major ionic constituents like Ca, Mg, K, Na, $HCO_3$ and Cl differed significantly. Dominant synergistic relationships were observed between EC-TDS, SAR-SSP, EC-Hardness, TDS-Hardness and RSC-Hardness.

Growth and solute pattern of Suaeda maritima and Suaeda asparagoides in an abandoned salt field

  • Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Sang-Hun;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.351-358
    • /
    • 2012
  • To investigate the environmental adaptation and ecophysiological characteristics of Suaeda maritima and S. asparagoides under saline conditions, plant growth and density were analyzed according to environmental changes of habitats. The total ion content of soil decreased with time, which was caused by the predominance of exchangeable $Na^+$ and $Cl^-$ in the upper layers. The population of S. maritima was more densely distributed in the region with higher ion contents of $Cl^-$, $Mg^{2+}$, $K^+$ and $Na^+$ than the population of S. asparagoides. Both species were showed a decreased population density according to increases in plant growth. Under the conditions of a salt field, S. maritima and S. asparagoides contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. In the case of free amino acid, S. maritima showed an especially high proline content, and contained rather large amounts of free amino acids, whereas S. asparagoides did not. Both species showed high inorganic ion contents in the leaves, which might be a mechanism of avoiding the ionic toxicity by diluting the accumulated ionic concentration with a high ratio of water content to dry weight. This result suggests that S. maritima seems to adapt to saline conditions by accumulating proline in addition to inorganic ions. S. asparagoides seems to adapt by osmoregulation processes, using inorganic ions rather than free amino acids.

Studies on the Spectrophotometric Determination and Electrochemical Behavior of Heavy Lanthanide Ions in Nonaqueous System and Heavy Metal Chelate Complexes with Bidentate Legands: (Part I) Flow Injection Spectrophotometric Determination of Heavy Lanthanide Ions with Xylenol Orange

  • Sam-Woo Kang;Chong-Min Park;Kwang-Hee Cho;Hong-Seock Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.59-62
    • /
    • 1993
  • Spectrophotometric determination of some heavy lanthanide ions by flow injection method is described. Xylenol Orange forms water soluble chelates with lanthanide ions in a tris[hydroxymethyl]-aminomethane-buffered medium having pH 8.3 and containing cetyltrimethylammonium bromide. The molar absorptivities of Ln(III)-XO complexes were increased by the ternary system with cetyltrimethylammonium bromide with the concomitant bathochromic shift of absorption maxium compared to those of the binary system without cetyltrimethylammonium bromide. The calibration curves are linear in the range 0.25-1.00 ppm for Gd(III), Dy(III), Er(III), Tm(III) and Yb(III) and the dynamic range are very wide. The detection limits (S/N=2) are from 2 ppb for Gd(III) to 30 ppb for Yb(III) and the relative standard deviations are from 1.2% for 0.5 ppm Gd(III) to 1.8% for 0.5 ppm Yb(III). The sample throughput was ca. 50 $h^{-1}$.

A Review of Fluoridation of Municipal Drinking Water; Considering the Interaction of Cations and Fluoride (상수도 불소화에 관한 고찰;양이온의 불화염 형성을 중심으로)

  • Ahn, Hei-Won;Shin, Dong-Chun;Chung, Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.19-26
    • /
    • 1998
  • In Korea, fluoride was first introduced into the drinking water of residents of Jinhae, KyungNam in 1981 for the prevention of dental caries. Ever since, growing numbers of communities favor fluoridation. The mechanism of F prevention of tooth decay is well known: fluoride ions substitute for hydroxyl ions in hydroxyapatite of hard tissues, which result in crystal perfection, with consequent reduction in dental caries. Soluble fluorides such as sodium fluoride are almost completely absorbed from the gastrointestinal tract. However, the presence of divalent or trivalent cations such as aluminum, magnesium, and calcium that can complex with F can reduce the degree of absorption. In U.S.A., over 7000 communities are now adding F to their drinking water. However, some portion of population oppose fluoridation, voicing both concern about the safety of fluoridation as well as for personal choice. Thus, This paper reviews the interaction of fluoride and cations as well as fluoride and suggests possible problems associated with fluoridation, a controversial issue.

  • PDF

Polyethyleneimine Derivative for Nucleic Acid Model

  • Lee, Chan-Woo;Chae, Hee-Jeong;Kwon, Young-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • Water-soluble polyethyleneimine (PE) derivatives containing nucleic acid bases and hydrophilic amino acids such as homoserine (Hse) and serine were prepared by the activated ester method as nucleic acid models. From spectroscopic measurements, the polymers were found to interact with DNA accompanied by an induction of conformational change. Hypochromicity in UV spectra indicated that a stable polymer complex was formed between poly (A) with PEI­Hse-Ura by complementary hydrogen bonding with equimolar nucleic base units (adenine:uracil=1:1). The induced conformation of DNA by the interaction with the polymer containing uracil and homoserine (PEI-Hse-Ura) was concluded to be a super triple helical structure. The formation of the polymer complex, DNA: PEI-Hse-Ura, was found to be affected by the presence of metal ions such as $Ca^{2+}\;and\;Cu^{2+}$.

Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Zhang, Daizhou;Yamamoto, Mariko;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • In order to clarify the thermal and hygroscopic properties of indoor particulate matter (PM) in a semiclosed subway space, which is critically important for understanding of the distinctive particle formation processes as well as the assessment of their health effects, the size-resolved PMs (i.e., $PM_{2.5}$ and $PM_{10-2.5}$) were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4. The elemental concentrations in soluble and insoluble fractions were determined by PIXE from the bulkily pretreated $PM_{2.5}$. The thermal and hygroscopic characteristics of individual particles were investigated via a combination of the unique pretreatment techniques (i.e., the high-temperature rapid thermal process and the water dialysis) and SEM-EDX analysis. Iron and calcium were unequaled in insoluble and soluble $PM_{2.5}$ fractions, respectively, with overwhelming concentration. The SEM-EDX's elemental net-counts for the pre- and post-pyrolyzed PMs newly suggest that magnesium and several elements (i.e., silica, aluminum, and calcium) may be readily involved in the newly generated subway fine PM by a high-temperature thermal processing when trains are breaking and starting. Through the water dialysis technique, it turned out that calcium has meaningful amount of water soluble fraction. Furthermore, the concentrations of the counter-ions associated with the calcium in subway $PM_{10-2.5}$ were theoretically estimated.

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Ionic Recognition with Quinone-Derivatized Calixarenes in Solution and at Self-Assembled Monlayers

  • Kim Hasuck;Kang Sun Kil;Chung Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.69-71
    • /
    • 2000
  • Redox-active calix[4]arenes with carboxylic acid and disulfide groups were prepared and spontaneous deposition on silver and gold surfaces was observed. Owing to their unusual structure, the calix[4]arenes exhibit selective affinity fur alkaline earth metal ions in aqueous media. When annular ionophores are immobilized on the surface, voltammetric and spectroscopic studies show the entrapment of metal ions. Furthermore, it was possible to reversibly capture and remove the ions using strong chelating agents such as ethylenediaminetetraacetic acid (EDTA).

Summarize Water-soluble Ions of $PM_{2.5}$ in Northeastern Asia

  • Z. He;Seong Y. Ryu;Kim, Jeong E.;K. O. Ogunjobi;Kim, Young J.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.400-401
    • /
    • 2003
  • Atmospheric fine aerosol particles play an important role in controlling a number of atmospheric processes, such as the deposition of different compounds, the optical properties etc. (Molnar et al., 1999). In this report, water-soluble species of PM$_{2.5}$ obtained from simultaneous measurements at four Asia sites (Beijng (39.56$^{\circ}$N, 116.17$^{\circ}$E), China; Gwangju (35.10$^{\circ}$N, 126.53$^{\circ}$E), South Korea; Kyoto (35.01$^{\circ}$N, 135.44$^{\circ}$E), Japan; and Ulan-Bator (47.55$^{\circ}$N, 106.52$^{\circ}$E), Mongolia) during the periods of 14-22 August, 30 October-06 November 2000, 14-21 January 2001, 23 July-02 August and 05-16 November 2002, within the framework of an APN (The Asia-Pacific Network for Global Change Research) project are reported. Ion components in 23 July-02 August 2002 were not obtained because of the technical problem of equipments.s.

  • PDF

Migration of calcium hydroxide compounds in construction waste soil

  • Shin, Eunchul;Kang, Jeongku
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • Migration of leachate generated through embankment of construction waste soil (CWS) in low-lying areas was studied through physical and chemical analysis. A leachate solution containing soluble cations from CWS was found to have a pH above 9.0. To determine the distribution coefficients in the alkali solution, column and migration tests were conducted in the laboratory. The physical and chemical properties of CWS satisfied environmental soil criteria; however, the pH was high. The effective diffusion coefficients for CWS ions fell within the range of $0.725-3.3{\times}10^{-6}cm^2/s$. Properties of pore water and the amount of undissolved gas in pore water influenced advection-diffusion behavior. Contaminants migrating from CWS exhibited time-dependent concentration profiles and an advective component of transport. Thus, the transport equations for CWS contaminant concentrations satisfied the differential equations in accordance with Fick's 2nd law. Therefore, the migration of the contaminant plume when the landfilling CWS reaches water table can be predicted based on pH using the effective diffusion coefficient determined in a laboratory test.