• Title/Summary/Keyword: water-repellent finish

Search Result 22, Processing Time 0.025 seconds

Effect of Hydrophilic and Hydrophobic Finishes of Fabrics on the Stratum Corneum Water Content and Comfort Properties (직물의 친수 및 소수화 처리가 피부잔류수분량 및 쾌적감에 미치는 영향)

  • Kahng, Soo Ma;Kim, Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.151-161
    • /
    • 1993
  • The purpose of this study was to investigate the effect of hydrophilic finish for polyester (PET) fabric and hydrophobic finish for cotton fabric on the water transport and comfort properties. Polyester fabric was treated with 10% sodium hydroxide solution to impart hydrophilicity. Cotton fabric was sprayed with Scotch-gard$^{(R)}$ water and oil repellent finish to impart hydrophobicity. Porosity, air permeability, contact angle, wickability and water vapor transport rate (WVTR) were measured to determine the water transport properties of fabrics. To compare the comfort properties of treated and untreated fabrics, wear test was performed by putting fabric patches on the upper back: stratum corneum water content (SCWC), subjective wettedness and comfort rating were determined. The results were as follows: (1) The contact angle of water on treated polyester fabric was decreased and that of treated cotton fabric was increased. Also, the wickability of treated polyester fabric was increased and the wickability of cotton fabric was decreased. (2) Although each finish did not change porosity, the water vapor transport rate of treated polyester fabric was increased and that of treated cotton fabric was decreased slightly. (3) The results of stratum corneum water content measurements showed good agreement with the results of the contact angle and the wickability, i.e., the better the liquid water transport properties are, the less the stratum corneum water contents were resulted. (4) The realtionship of subjective wettedness or comfort and stratum corneum water content was independent. Therefore, it was concluded that human perception on the subjective wettedness or the comfort is affected by the skin contact of wet fabric rather than by the stratum corneum water content.

  • PDF

A Study on the Preparation of Durable Softening Water-repellent by Blending Acrylic Copolymer and Fatty Carbamide;IV. Water-repellent Finish of P/C Blended Fabrics (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;IV. P/C 혼방직물에의 발수가공)

  • Ko, Jae-Yong;Hong, Eui-Suk;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 1996
  • Durable softening water-repellenting agent such as PODCW, PDDCW and PEDCW were prepared by blending cationized compound such as poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate)[PODC], poly(2-dodecyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PDDC] and poly(2-ethylhexyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PEDC], and cationized compound of fatty carbamide, of which synthetic methods were reported in the previous paper, waxes, and emulsifiers. The results of physical tests of the P/C blended fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed a remarkable improvement of the physical properties. The prepared water-repellenting agents, PODCW-6 and PDDCW-1, were treated on P/C blended fabrics with and without resin. For any cases, there are a little changes between initial water repellency and repellency after 3 times washing of the fabrics. Therefore, the water-repellenting agents proved to be a durable agents, and initial water $100^{+}$ and $90^{+}$ point, respectively.

Water Repellent Finish of Polyester Fabric Using Glow Discharge Treatment (글로우방전을 이용한 폴리에스테르 직물의 투습방수성 개질)

  • 김태년
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.154-161
    • /
    • 2001
  • We have treated polyester fabric with $CF_4,\;C_2F_6,\;SF_6\;and\;C_3F_6$ glow discharge plasmas to develop functional fabrics which preserve moisture transportation and water proofing nature. Modified properties were evaluated by water vapor permeation rate and breakthrough water pressure. The change of surface morphology was observed by SEM. Fiber interstice of the plasma treated fabric was calculated as $0.32{\mu}{\textrm}{m}$, and this value was sufficiently ideal as water repellent material. The moisture transportation of ${CF_4}-treated$ fabric was good as much as untreated fabric, and those of $C_2$F(sub)6-treated, SF(sub)6-treated fabrics were reduced by 1~3%, and that of ${C_3F_6}-treated$ fabric was reduced by 15%. The best treatment condition were 0.06 torr 120 seconds in $CF_4$, 0.05 torr 30 seconds in $SF_6$, 0.08~0.15 torr 90 seconds in $SF_6$ and 0.1 torr 45 seconds in $C_3F_6$ respectively. The grade of moisture transportation effect was $CF_4>C_2F_6>SF_6>>C_3F_6$, and water proofing effect was $C_2F_6{\approx}CF_4>C_3F_6>SF_6$. It was observed by SEM that the thin film was formed on the surface of the treated substrate by the fluorocarbon plasma treatment.

  • PDF

Wear Performance of Pesticide Protective Clothing in Vinyl Plastic Hothouse made with Water-Oil Repellent and Dual Functional Finished Nonwoven Fabrics (비닐하우스 내에서의 발수발유가공 부직포와 복합가공 부직포로 만든 농약 방호복의 착용성능)

  • Choi, Jong-Myoung;Cho, Jeong-Sook;Cho, Gil-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.350-361
    • /
    • 1996
  • The objectives of this study mere 1) to investigate whether the different nonwoven fabric types influenced on the objective and subjective wear performances of the experimental pesticide protective pants, 2) to detect whether the different finishes treated to the nonwoven fabrics influenced on the objective and subjective wear performances of the experimental pants, and 3) to detect the relationships between objective wear performances and subjective wear sensation. Three types of nonwoven fabrics (T (Tyvek$\textregistered$), 5 (Sontara$\textregistered$) and K (Kimlon$\textregistered$)) were used as test specimens. By pad-dry.cure method, each of the specimen was treated with fluorocarbon compound for water-oil repellent finish (Tw, Sw, Kw). And each of specimen was treated with organic silicon quarternary ammonium salts and then treated with fluorocabon compound for dual functional finish (76, 50, Kd). Using the three water-oil repellent finished fabrics and the three dual functional finished fabrics, six experimental protective pants (Cl (Tw), C2 (Sw), C3 (Kw), C4 (76), C5 (56), C6 (Kd)) were made according to the same pattern suggested by the Rual Guidance Office. The wear trials of experimental pesticide protective pants were performed in a conditioned vinyl plastic hothouse ($30\pm1^{\circ}C$, $70\pm5%$R.H., 0.25m/sec air velocity). The measurements of skin temperature, microclimate temperature and humidity on the subjects were obtained by the themohygromenter. The subjective wear sensations were measured using previously developed thermal, humidity and overall comfort scales. The results obtained from this study were as follows: 1) There were siginificant differences among nonwoven fabric types on the objective and subjective wear performances, therefore, the skin temperature, microclimate temperature and humidity of subjects who wore the experimental pants made with Sontara were siginificantly lower than those who wore the others. And, the experimental pants made with Sontara were assessed as more comfortable than the others in terms of the subjective thermal, humidity and overall wear sensations. 2) There were no significant differences between two finish types on the objective and subjective wear Performances. 3) The microclimate humidity on the thigh was highly correlated with the overall subjective comfort sensations and the next highly correlated one was the mean skin temperature. That is, the higher the microclimate humidity and the mean skin temperature, the higher the overall subjective comfort sensation ratings which mean the overall subjective sensation was very uncomfortable.

  • PDF

Antibacterial, Water-repellent, Antisoil finish of Composite Wool Fabrics (Wool복합직물의 항균, 발수, 방오 복합염색가공)

  • Gwon, Il-Jun;Park, Seong-Min;Kim, Ji-Yeon;Son, Won-Seok;Kim, Cheol-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.204-206
    • /
    • 2008
  • 본 연구는 양모 복합섬유용 복합가공제 및 이를 이용한 양모 복합섬유의 복합가공방법에 관한 것으로서, 여러 실험조건을 통해 양모를 포함하는 다종 섬유간에 손상 또는 침해가 없으면서 색상의 균염성을 확보하고, 우수한 항균성, 발수성, 방오성을 발현할 수 있는 양모 복합섬유가공에 관한 연구이다.

  • PDF

Preparation of Durable Softening Water Repellents by Blends of Activated Polyethylene / Wax / Acrylic Copolymer(II);Water-Repellent Finish of Cotton Fabrics (활성화 폴리에틸렌 / 왁스 / 아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구(II);면직물에의 발수가공)

  • Kim, Sung-Gea;Shin, Jae-Hyun;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 1996
  • The procedure to prepare an acrylic emulsion water repellents by blending of arcylic copolymer, activated polyethylene, wax, and emulsifiers was published in the previous paper. After the treatment of the prepared water repellents on a cotton fabrics with and without textile finishing resin, washability, contact angle, tearing strength, and crease recovery were tested. As the result, there were remarkable improvements in physical properties. Proper curing temperature of the synthesized water repellents impellents was $150^{\circ}C$ : proper using concentration was 5wt% : sodium acetate was the best catalyst for water repellents among the used, and proper concentration was 1.0wt%.

Preparation of Durable Softening Water Repellents by Blends of Activated Polyethylene/Wax/Acrylic Copolymer(I) (활성화 폴리에틸렌/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구(I))

  • Shin, Jae-Hyun;Kim, Sung-Gea;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 1996
  • Durable softening water repellents such as PODCWs were prepared by blending cationized compound of poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate), of which synthetic methods were reported in the previous paper, activated polythylene, waxes, and emulsifiers. Water repellency of prepared PODCWs was measured by performing water repellent finish to various fabrics, PODCWs showed a good water repellency for P/C blended fabrics and their repelling tendency was in the order of P/C blended fabrics>cotton fabrics>nylon taffeta. The initial water repellencies of PODCW-1 and PODCW-2 were 100 and $100^{-}$ points, respectively, for P/C blended fabrics. And also, PODCW-1 and PODCW-2 were confirmed as durable water repellents with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.

A Study on the Preparation of Durable Softening Water Repellent by Blending Acrylic Copolymer and Fatty Carbamide;Water Repelling Finish of PET Fabrics (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;V. PET 직물에의 발수가공)

  • Im, Wan-Bin;Kim, Seong-Kil;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.137-144
    • /
    • 1996
  • Durable softening water repellents such as PODCW, PDDCW, and PEDCW were prepared by blending cationized polymers, fatty carbamide, waxes, and emulsifiers. The cationized polymers included poly (octadecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PODC], poly (n-dodecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PDDC]and poly (2-ethylhexyl methacrylate-co-2-diethylaminoethyl methacrylate) [PEDC]. After the PET fabrics were treated with these water repellents, water repellency, softness, and durability of the PET fabrics were examined by various methods : water repellency by the hydrostatic pressure and the contact angle methods, softness by crease recovery and tearing strength, and durability by washability, respectively. Rating of water repellency of PET fabrics treated with PODCW was $80^{+}$, but those treated with PDDCW and PEDCW were not high enough to be used in industry.

Effect of Washing and Subsequent Heat Treatment on Water Repellency and Mechanical Properties of Nylon 6, Triacetate and Silk Fabrics Treated with Hydrocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul;Nishi, Kenji;Wakida, Tomiji
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.87-91
    • /
    • 2008
  • It is commonly known that water repellency of the fabric treated with fluorocarbon resin brings about a decrease by the washing and recovers by the subsequent heat treatment. In this article, effect of the water repellency was investigated on the nylon 6, triacetate and silk fabrics treated with hydrocarbon and silicon resins. Hydrocarbon and silicon resins have been widely used in the textile finishing as the softening and water proofing agents. The fabrics were treated with hydrocarbon resins, Paragium JQ and RC (Ohara Paragium Chemical Co.) and a silicon resin, Poron MR (Shinetsu Chemical Co.), and then washed and subsequently heat treated. Although the water repellency increased by the resin treatment, it decreased by the washing apparently and recovered a little by the heat treatment. The effect of the heat treatment was small comparing with that of the fluorocarbon resin. Furthermore, as a mechanical property of the treated fabric, KES shearing and bending hysteresis parameters, modulus and hysteresis width of the hydrocarbon resin-treated nylon 6, triacetate and silk fabrics decreased by the heat treatment after washing. Therefore, the treatment is effective at improving the softening of the fabric in water repellent finish.

Water repellent, Antisoil finish Using $TiO_2$ Nano Sol ($TiO_2$ 나노졸을 이용한 발수, 방오 성능 향상 연구(1))

  • Park, Seong-Min;Gwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeom, Jeong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.207-209
    • /
    • 2008
  • 본 연구는 PFOA 규제대응 발수제(불소고분자의 탄소수가 6개)와 신규합성한 $TiO_2$ sol을 부피비로 혼용한 후 그에 따른 발수성과 방오성 향상에 관한 연구이다. 발수제 단독 처리 시 발수제의 사용량이 점차 줄어듬에 따라 발수도는 100에서 50${\sim}$70으로 점차 감소하였으며, 방오성은 5에서 2로 감소하였다. 그러나 $TiO_2$ sol을 발수제와 혼용하였을 경우 발수제의 사용량이 줄어듬에 따라 발수도가 100에서 80으로 방오성은 5에서 3.5로 감소하였으나, 발수제 단독 처리 시보다 우수한 결과가 나왔다.

  • PDF