• Title/Summary/Keyword: water-quality monitoring

검색결과 1,052건 처리시간 0.029초

새만금 하구역의 이화학적 환경요인에 따른 수질 평가 (The Evaluation of Water Quality in Coastal Sea of Saemangeum by Chemical Environmental factors)

  • 김재옥;김원장;조국현
    • 한국농공학회논문집
    • /
    • 제49권5호
    • /
    • pp.57-65
    • /
    • 2007
  • The objective of this study was to evaluate chemical water quality by hourly monitoring(25hr) of Saemangeum esturary. For this study, we selected 2 sites like a Mangyong Bridge(St. 6) and Dongjin Bridge(St. 7). Inflow of salt water was not detected during low tide(maximum 553, 508cm) of all stations, while the salinity rises were detected in spring tide(750cm). When 602m of maximum tide was reached, salinity concentration was increased at St. 7, while there was no change in St. 6. Therefore, We know that salinity variation is greatly influenced by tide height at survey site. Also, significant variance of salinity(p<0.05) was found between St. 6 and St. 7 because dike construction made the flood tide move into the Dongjin river. Total suspened solids(TSS) concentration was increased because of the river runoff at St. 6, and also the turbulance and resuspension according to salt intrusion at St. 7. During the high tide, the water discharge from the sea seemed to dilute the nutrient but to elevate TSS concentration in St. 7. Silicate and nitrate concentrations in the studied site were decreased by the mixing of sea water, whereas the evident trend of phosphate concentration was not found. This result can be explained by the phosphorus condition. Phosphorus exists inactive when it is affected by hydrated iron and adsorbed onto suspended matters. Compared to the environmental conditions of the St. 6 and St. 7, physical factors such as temperature, dissolved oxygen and TSS have statistically no significant difference(p<0.001), but nutrient concentrations were higher at St. 6 than St. 7. It could be suggested from these results that it is important to control the discharge of fresh water by sewage treatment plants located in St. 6 for water quality management.

하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구 (A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant)

  • 남의석
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

환경부 8일 유량‧수질 자료를 이용한 SS오염부하량 산정의 한계점 분석 (Limitation Analysis on Estimation of SS Pollutant Load using Korean Ministry of Environment's 8-Day Interval Flow and Water Quality data)

  • 김태구;유종원;조형익;한정호;이동준;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.149-162
    • /
    • 2016
  • In recent years, there has been demand for precise estimations of pollutant loads on nationwide scale for the development of appropriate site specific (watershed specific) policies to reduce the negative impact of pollutant loads. River flow data and water quality data that were previously collected by various research institutes and universities for specific research purposes for a limited period was utilized in this study. However, only TMDL 8-day interval flow and water quality data were available in national scale. Three watersheds were selected and pollutant loads were calculated by two methods i.e., Numeric Integration (NI) method and Soil and Water Assessment Tool (SWAT). Subsequently, the results were compared to determine the appropriate method for monitoring nonpoint source networks nationwide. The SWAT model was calibrated and its estimated daily flow data were used in the NI method with estimated sediment data for 8-day monitoring data for three watersheds. The results indicated that the quantity of pollutant loads estimated with the NI and SWAT are different to some degrees especially during the summer season for all the three study watersheds. Thus, more frequent sampling of water quality is needed for nonpoint source pollutant estimation.

수질샘플빈도에 따른 산림유역의 비점원오염부하특성 (Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies)

  • 신민환;신용철;허성구;임경재;최중대
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Rainfall and Water Quality Characteristics of Saemangeum Area

  • Monica, Nankya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.203-209
    • /
    • 2014
  • This study investigated characteristics of rainfall and water quality in Saemangeum area with attention to temporal and spatial distributions. A high variability in rainfall was noted during July and August. The temporal analysis of water quality data indicated that DO and TN as well as BOD, COD and SS were within national standards except for increased concentrations during spring and summer, unlike TP values that indicated poor water quality. Standard deviation showed a high variability in SS among the seasons most especially during summer. The high dispersion indicated variability in the chemical composition of pollutants where the temporal and spatial variations caused by polluting sources and/or seasonal changes were most evident for BOD and COD during winter and spring. The box plots and bar charts showed steadily low concentrations of BOD, COD, TN and TP except within Iksan and notable significant variations in SS concentrations among the monitoring stations. Thus, high pollution levels requiring intervention were identified in Mangyeong river basin with particular concern for areas represented by Iksan station. It was noted that Iksan received a considerable amount of rainfall which meant high runoff which could explain the significant pollution levels revealed in the water quality spatial distribution. Major pollution contributing pollutants within Saemangeum area were identified as SS, BOD, COD and TN. Therefore the present results could be used as a guideline for the temporal and spatial distributions analysis of both rainfall and water quality in Saemangeum watershed.

소규모 축산 농가가 산재한 유역 수질 모니터링(지역환경 \circled1) (Water Quality Monitoring from a Watershed with Small-Scale Livestock Production Farms)

  • 이남호;윤광식;김성준;홍성구
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.543-549
    • /
    • 2000
  • Water quality was monitored from a watershed with small-scale livestock production farms. To evaluate pollution potential, land use, population, the size of livestock production of each farm, and livestock management were surveyed. Climate and stream flow data were gathered. Water samples were taken periodically for base conditions and some storm events. Pollutant loading was estimated by flow volume and concentrations of constituents.

  • PDF