• Title/Summary/Keyword: water-level prediction

Search Result 349, Processing Time 0.032 seconds

Evaluation of Relationship between Rainfall Intensity for Duration of Watersheds and Peak Water Levels of Local Rivers (지방하천 유역의 지속시간별 강우강도와 첨두수위 관계식 산정)

  • Choi, Han-Kuy;Kong, Ji-Hyuk;Baek, Hyou-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.71-78
    • /
    • 2011
  • As the need for predicting the flood stage of river from torrential downpouring caused by climate change is increasingly emphasized, the study, centered on the area of Gangwon-do Inje-gun and Jeongseon-gun of local river, is to develop peak water level regression equation by rainfall. Through the correlation between rainfall and peak water level, it is confirmed that rainfall according to duration and peak water level have a high correlation coefficient. Based on this, a relational expression of rainfall and peak water level is verified and then the adequacy of the calculated expression is analyzed and the result shows that a very accurate prediction is not easy to achieve but a rough prediction of the change of water level at each point is possible.

  • PDF

A Study on LSTM-based water level prediction model and suitability evaluation (LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구)

  • Lee, Eunji;Park, Hyungwook;Kim, Eunju
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.56-62
    • /
    • 2022
  • Water reservoir is defined as a storage space to hold and supply filtered water and it's significantly important to manage water level in the water reservoir so as to stabilize water supply by controlling water supply depending on demand. Liquid level sensors have been installed in the water reservoir and the pumps in the booster station facilitated management for optimum water level in the water reservoir. But the incident responses including sensor malfunction and communication breakdown actually count on manager's inspection, which involves risk of accidents. To stabilize draining facility management, this study has come up with AI model that predicts changes in the water level in the water reservoir. Going through simulation in the case of missing data in the water level to verify stability in relation to the field application of the prediction model for water level changes in the reservoir, the comparison of actual change value and predicted value allows to test utility of the model.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Prediction of water level in a tidal river using a deep-learning based LSTM model (딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측)

  • Jung, Sungho;Cho, Hyoseob;Kim, Jeongyup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1207-1216
    • /
    • 2018
  • Discharge or water level predictions at tidally affected river reaches are currently still a great challenge in hydrological practices. This research aims to predict water level of the tide dominated site, Jamsu bridge in the Han River downstream. Physics-based hydrodynamic approaches are sometimes not applicable for water level prediction in such a tidal river due to uncertainty sources like rainfall forecasting data. In this study, TensorFlow deep learning framework was used to build a deep neural network based LSTM model and its applications. The LSTM model was trained based on 3 data sets having 10-min temporal resolution: Paldang dam release, Jamsu bridge water level, predicted tidal level for 6 years (2011~2016) and then predict the water level time series given the six lead times: 1, 3, 6, 9, 12, 24 hours. The optimal hyper-parameters of LSTM model were set up as follows: 6 hidden layers number, 0.01 learning rate, 3000 iterations. In addition, we changed the key parameter of LSTM model, sequence length, ranging from 1 to 6 hours to test its affect to prediction results. The LSTM model with the 1 hr sequence length led to the best performing prediction results for the all cases. In particular, it resulted in very accurate prediction: RMSE (0.065 cm) and NSE (0.99) for the 1 hr lead time prediction case. However, as the lead time became longer, the RMSE increased from 0.08 m (1 hr lead time) to 0.28 m (24 hrs lead time) and the NSE decreased from 0.99 (1 hr lead time) to 0.74 (24 hrs lead time), respectively.

Prediction of Water Level at Downstream Site by Using Water Level Data at Upstream Gaging Station (상류 수위관측소 자료를 활용한 하류 지점 수위 예측)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, the overseas construction market has been actively promoted for about 10 years, and overseas dam construction has been continuously performed. For the economic and safe construction of the dam, it is important to prepare the main dam construction plan considering the design frequency of the diversion tunnel and the cofferdam. In this respect, the prediction of river level during the rainy season is significant. Since most of the overseas dam construction sites are located in areas with poor infrastructure, the most efficient and economic method to predict the water level in dam construction is to use the upstream water level. In this study, a linear regression model, which is one of the simplest statistical methods, was proposed and examined to predict the downstream level from the upstream level. The Pyeongchang River basin, which has the characteristics of the upper stream (mountain stream), was selected as the target site and the observed water level in Pyeongchang and Panwoon gaging station were used. A regression equation was developed using the water level data set from August 22th to 27th, 2017, and its applicability was tested using the water level data set from August 28th to September 1st, 2018. The dependent variable was selected as the "level difference between two stations," and the independent variable was selected as "the level of water level in Pyeongchang station two hours ago" and the "water level change rate in Pyeongchang station (m/hr)". In addition, the accuracy of the developed equation was checked by using the regression statistics of Root Mean Square Error (RMSE), Adjusted Coefficient of Determination (ACD), and Nach Sutcliffe efficiency Coefficient (NSEC). As a result, the statistical value of the linear regression model was very high, so the downstream water level prediction using the upstream water level was examined in a highly reliable way. In addition, the results of the application of the water level change rate (m/hr) to the regression equation show that although the increase of the statistical value is not large, it is effective to reduce the water level error in the rapid level rise section. Accordingly, this is a significant advantage in estimating the evacuation water level during main dam construction to secure safety in construction site.

Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM (DNN 및 LSTM 기반 딥러닝 모형을 활용한 태화강 유역의 수위 예측)

  • Lee, Myungjin;Kim, Jongsung;Yoo, Younghoon;Kim, Hung Soo;Kim, Sam Eun;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1061-1069
    • /
    • 2021
  • Recently, the magnitude and frequency of extreme heavy rains and localized heavy rains have increased due to abnormal climate, which caused increased flood damage in river basin. As a result, the nonlinearity of the hydrological system of rivers or basins is increasing, and there is a limitation in that the lead time is insufficient to predict the water level using the existing physical-based hydrological model. This study predicted the water level at Ulsan (Taehwagyo) with a lead time of 0, 1, 2, 3, 6, 12 hours by applying deep learning techniques based on Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and evaluated the prediction accuracy. As a result, DNN model using the sliding window concept showed the highest accuracy with a correlation coefficient of 0.97 and RMSE of 0.82 m. If deep learning-based water level prediction using a DNN model is performed in the future, high prediction accuracy and sufficient lead time can be secured than water level prediction using existing physical-based hydrological models.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Implementation of CNN-based water level prediction model for river flood prediction (하천 홍수 예측을 위한 CNN 기반의 수위 예측 모델 구현)

  • Cho, Minwoo;Kim, Sujin;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1471-1476
    • /
    • 2021
  • Flood damage can cause floods or tsunamis, which can result in enormous loss of life and property. In this regard, damage can be reduced by making a quick evacuation decision through flood prediction, and many studies are underway in this field to predict floods using time series data. In this paper, we propose a CNN-based time series prediction model. A CNN-based water level prediction model was implemented using the river level and precipitation, and the performance was confirmed by comparing it with the LSTM and GRU models, which are often used for time series prediction. In addition, by checking the performance difference according to the size of the input data, it was possible to find the points to be supplemented, and it was confirmed that better performance than LSTM and GRU could be obtained. Through this, it is thought that it can be utilized as an initial study for flood prediction.

The estimation of water level fluctuation in the down stream water mark by water level fluctuation in the upper region water mark (상류지점 수위표 수위변동에 따른 하류지점 수위표 수위변동예측)

  • Choi, Han-Kuy;Lim, Yoon-Soo;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.83-89
    • /
    • 2010
  • Generally, the accuracy of the prediction of flood elevation is difficult to identify due to the sedimentation on a river bed, earth and sand being moved by flow, and localized torrential downpours caused by climate change. It is also because of natural and artificial influences on rivers. To predict river floodings successfully, more precise and reliable flood elevation prediction system is needed, in which the concentration time of downstream is numerically interpreted through analyzing and utilizing the watermark of the upper region. Therefore, this research analyzed the prediction methods of the changes in water levels, which use the watermarks of the upper region. The watermarks which impacts the spot being predicted of flood was selected through floodgate analysis and correlation analysis. With the selected watermarks, a statistically reliable regression equation was yielded.

  • PDF

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.