• Title/Summary/Keyword: water-level prediction

Search Result 349, Processing Time 0.023 seconds

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

Groundwater Level Prediction Using ANFIS Algorithm (ANFIS 알고리즘을 이용한 지하수수위 예측)

  • Bak, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1235-1240
    • /
    • 2019
  • It is well known that the ground water level changes rapidly before and after the earthquake, and the variation of ground water level prediction is used to predict the earthquake. In this paper, we predict the ground water level in Miryang City using ANFIS algorithm for earthquake prediction. For this purpose, this paper used precipitation and temperature acquired from National Weather Service and data of underground water level from Rural Groundwater Observation Network of Korea Rural Community Corporation which is installed in Miryang city, Gyeongsangnam-do. We measure the prediction accuracy using RMSE and MAPE calculation methods. As a result of the prediction, the periodic pattern was predicted by natural factors, but the change value of ground water level was changed by other variables such as artificial factors that was not detected. To solve this problem, it is necessary to digitize the ground water level by numerically quantifying artificial variables, and to measure the precipitation and pressure according to the exact location of the observation ball measuring the ground water level.

Design of Artificial Intelligence Water Level Prediction System for Prediction of River Flood (하천 범람 예측을 위한 인공지능 수위 예측 시스템 설계)

  • Park, Se-Hyun;Kim, Hyun-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.198-203
    • /
    • 2020
  • In this paper, we propose an artificial water level prediction system for small river flood prediction. River level prediction can be a measure to reduce flood damage. However, it is difficult to build a flood model in river because of the inherent nature of the river or rainfall that affects river flooding. In general, the downstream water level is affected by the water level at adjacent upstream. Therefore, in this study, we constructed an artificial intelligence model using Recurrent Neural Network(LSTM) that predicts the water level of downstream with the water level of two upstream points. The proposed artificial intelligence system designed a water level meter and built a server using Nodejs. The proposed neural network hardware system can predict the water level every 6 hours in the real river.

Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting (다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안)

  • Hyeseung Park;Jongwook Yoon;Hojun Lee;Hyunho Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2024
  • Local reservoirs are crucial sources for agricultural water supply, necessitating stable water level management to prepare for extreme climate conditions such as droughts. Water level prediction is significantly influenced by local climate characteristics, such as localized rainfall, as well as seasonal factors including cropping times, making it essential to understand the correlation between input and output data as much as selecting an appropriate prediction model. In this study, extensive multivariate data from over 400 reservoirs in Jeollabuk-do from 1991 to 2022 was utilized to train and validate a water level prediction model that comprehensively reflects the complex hydrological and climatological environmental factors of each reservoir, and to analyze the impact of each input feature on the prediction performance of water levels. Instead of focusing on improvements in water level performance through neural network structures, the study adopts a basic Feedforward Neural Network composed of fully connected layers, batch normalization, dropout, and activation functions, focusing on the correlation between multivariate input data and prediction performance. Additionally, most existing studies only present short-term prediction performance on a daily basis, which is not suitable for practical environments that require medium to long-term predictions, such as 10 days or a month. Therefore, this study measured the water level prediction performance up to one month ahead through a recursive method that uses daily prediction values as the next input. The experiment identified performance changes according to the prediction period and analyzed the impact of each input feature on the overall performance based on an Ablation study.

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.

Relational expression of rainfall intensity by the water level fluctuate in the mountain region river of Gang won-do (강원도 산간 지역 하천을 대상으로 한 강우강도에 따른 수위 변동 관계식 작성)

  • Choi, Han-Kuy;Kong, Ji-Hyuk;Lee, Yik-Sang;Cho, Hyun-Jeung;Park, Je-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.154-159
    • /
    • 2011
  • As the need for predicting the flood stage of river from torrential downpouring caused by climate change is increasingly emphasized, the study, centered on the area of Gangwon-do Inje-gun and Jeongseon-gun of local river, is to develop peak water level regression equation by rainfall. Through the correlation between rainfall and peak water level, it is confirmed that rainfall according to duration and peak water level have a high correlation coefficient. Based on this, a relational expression of rainfall and peak water level is verified and then the adequacy of the calculated expression is analyzed and the result shows that a very accurate prediction is not easy to achieve but a rough prediction of the change of water level at each point is possible.

  • PDF

Flow rate prediction at Paldang Bridge using deep learning models (딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측)

  • Seong, Yeongjeong;Park, Kidoo;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.565-575
    • /
    • 2022
  • Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.