• Title/Summary/Keyword: water-level change

Search Result 1,296, Processing Time 0.028 seconds

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.

Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario (SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석)

  • Kim, Jihye;Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

Spatio-temporal Evaluation of Air Temperature-Water Quality Elasticity in Tributary Streams According To Climate Change (기후변화에 따른 지류 하천의 시공간적 기온-수질 탄성도 영향 평가)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.296-306
    • /
    • 2021
  • Elasticity is a statistical technique that interprets the changing pattern of another variable according to a change in one variable as a quantitative numerical value and provides more information than correlation analysis and is widely used in climate change research. In this study the elasticity was calculated and sensitivity analysis was performed using air temperature and water quality data of the major tributaries of the Nakdong River. In addition the confidence interval for the elasticity was calculated using the T-Test and the validity of the elasticity was examined. The strength of elasticity shows high strength in the order of summer>fall>spring>winter and the direction shows regional characteristics with both negative and positive elasticity. After performing hierarchical cluster analysis on monthly observation data they were classified into 5 clusters and the characteristics of each cluster were visually analyzed using a parallel coordinate graph. The direction and intensity of the air temperature elasticity show regional characteristics due to the relatively high population density and complex influencing factors such as sewage treatment plants, small-scale livestock houses and agricultural activities. In the case of TP it shows great regional variability according to the circulation of nutrients in the ecosystem caused by algae growth and death according to temperature changes. Since the air temperature elasticity of the major tributaries of the Nakdong River is over weak and is valid at the significance level of 5%, it was analyzed that there is a change in water quality according to the air temperature change.

Evolution of Water supply system! Smart Water Management for customer - Smart Water City Pilot Project - (수도 서비스의 진화! 소비자 중심의 스마트 물 관리 - Smart Water City 시범사업 -)

  • Kim, Jae-Bog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • Korea's modern waterworks began with construction of DDukdo water treatment plant in 1908 and has been growing rapidly along with the country's economic development. As a result, water supply rates have reached 98.5% based on 2013. Despite multilateral efforts for high-quality water supply, such as introduction of advanced water treatment process, expansion of waterworks infrastructure and so on, distrust for drinking tap water has been continuing and domestic consumption rate of tap water is in around 5% level and extremely poor comparing to advanced countries such as the United States(56%), Japan(52%), etc. Recently, the water management has been facing the new phase due to water environmental degradation caused by climate change, aging facilities, etc. Therefore, K-water has converted water management paradigm from the "clean and safe water" to the "healthy water" and been pushing the Smart Water City(SWC) Pilot Project in order to develop and spread new water supply models for consumers to believe and drink tap water through systematic water quality and quantity management combining ICT in the whole water supply process. The SWC pilot projects in Pa-ju city and Go-ryeong county were an opportunity to check the likelihood of the "smart water management" as the answer to future water management. It is needed to examine the necessity of smart water management introduction and nationwide SWC expansion in order to improve water welfare for people and resolve domestic & foreign water problems.

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

Study on Classification of Protective Coating Service Level in Nuclear Power Plant (원자력발전소 방호도장 Service Level 분류에 대한 고찰)

  • Lim, Sang-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.140-141
    • /
    • 2018
  • Protective coatings at nuclear power plants should be designed to withstand exposure to ambient conditions during normal operation or design-basis accidents. However, there was a change in the perception of the protective coating to the revision of the Regulatory Guidelines by the NRC in July 2000. In other words, maintenance guidelines have been strengthened in order to minimize the clogging of the cooling water system due to the substances in the containment building. Therefore, KHNP, the contractor and operator of the nuclear power plant, plans to develop the coating system for nuclear power plants in accordance with the regulation, and plans to develop its own coating expert.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Analysis of Correlation with Cross Sectional Area of Flow and Flow Rate Variation of Discharge Measurement Point in the Upper Stream of Seomjin River (섬진강상류 유량측정지점의 유수단면적과 유량변화에 따른 상관관계 분석)

  • Song, KwangDuck;Kim, KapSoon;Lee, DongJin;Ham, SangIn;Kim, DaeYoung;Oh, TaeYoun;Lee, JaeChoon;Lim, ByungJin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.94-102
    • /
    • 2013
  • This study was carried out to determine the variation of the water level and crosssection area for investigating changes of stream foreland, and to determine the correlation between the average flow velocity and cross-section area so as to understand the hydrological characteristics of the stream. The slope of the cross-sectional area was changed in water levels of 0.6~1.0 m and 1.8~2.0 m. The first change occurred in the low-water level season, and the second change occurred in the high-water level seasons. It is assumed that the changes occurred due to the geological transfigure. The correlation between the cross-sectional area and the average flow velocity was 0.22~0.86 in the exponential equation and 0.20~0.87 in the linear equation. The low water level had a higher correlation than the high water level, and free weirs in the upper stream showed a very low correlation. Therefore, this study provides novel information for the management of water quality in the riverside, using correlation equations of the water level and flow velocity with the cross section area.

Experimental Study on Influence of Ground Collapse due to Ground Water Level Lowering (지하수위 저하가 지반함몰에 미치는 영향에 관한 실험적 연구)

  • Kim, Sukja;Jung, Kwansue
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.23-30
    • /
    • 2018
  • According to recent ground collapse occurrence, ground subsidence is increasing every year in downtown area, which is a social problem. The purpose of this study is to investigate the relationship between ground water level lowering and ground collapse through laboratory model experiments. After mixing 1:1 granite weathered soil with sand, sandy soil was formed as a relative density of 30%, 50%, and 80%. And then the changes of soil discharge with change of groundwater level were compared. The physical property of material of which particle distribution were well graded with maximu dry unit weight of $1.94kg/cm^3$ and internal friction angle of 37degrees. Ground water levels were measured at 10 cm, 20 cm, and 30 cm from the bottom. As a result, the experiment shows that the higher the groundwater level works the higher the discharge velocity and the magnitude of underground cavity also increases with elapsed time. Finally, the cumulative quantity of soil discharge occurred up to 30 kg at the elapsed time, 35 minutes. It was also confirmed that the range of ground collapse increased due to soil discharge with ground water level lowering.