• Title/Summary/Keyword: water-level

Search Result 9,410, Processing Time 0.033 seconds

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data (낙동강 남강 합류부 수위와 수질 패턴 및 추세)

  • Yang, Deuk Seok;Im, Teo Hyo;Lee, In Jung;Jung, Kang Young;Kim, Gyeong Hoon;Kwon, Heon Gak;Yoo, Je-Chul;Ahn, Jung Min
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.

A Study on the Sensor for Measuring Near-distance Variation by using Ultrasonic Transducer (초음파 트랜스듀서를 사용한 근접거리변동 측정용 센서개발에 관한 연구)

  • Yang, Yun-Suk;Shin, Young-Lok;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.175-178
    • /
    • 2000
  • In this study, the ultrasonic transducer was fabricated with piezoceramic-polymer 1-3 type composites. Pulse-echo response of that transducer in water was investigated with variable water-level. Output of LED was under the control of the signal, which was analyzerd by the self-made Electric Unit. This paper represents automatically water-detecting system with variable water level. There was in good agreement water level between the virtual level and output signal by using the self-made water-detecting system.

  • PDF

The study for water level estimation by rainfall intensity of the upper region in the han river (한강 상류유역의 강우강도에 따른 수위 예측 연구)

  • Choi, Han-Kuy;Choe, Hyun-jong;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.91-98
    • /
    • 2010
  • Recently, there has been enormous damage due to river floodings caused by localized heavy rains. The direct discharge triggered by those torrential rains inflicts severe property damage on the residents of nearby areas. To minimize the possibility of river floodings in case of heavy rains and to predict the possible damage, the management of existing rainfall and water level observatories should be checked and prediction methods based on the characteristics of water usage and floodgate of nearby rivers must be further analyzed. Therefore, this research analyzed the water level change predictions on different spots with a regression equation of rainfall and water levels, using the observation data of the water level observatory in Jeongseon-gun, Gangwon Province and the rainfall observatory which are located on the upper region of the Han river.

  • PDF

A study of Water Level Control System (수위관리 시스템 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.504-508
    • /
    • 2010
  • A reducing labor is a big issue in rural community due to a increasingly aging society. In this paper, the water control system for corps production with a function of automatically controls and solar energy system is developed. The water level was measured by ultrasonic sensor and water gate was controlled by using servo motor. The system had included ATmega 128 control unit for signal controls. The water level control system will be able to contribute to the aging rural society.

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

Salinity and water level measuring device using fixed type buoyancy (고정식 부력을 이용한 염도 및 수위 측정 방식에 대한 연구)

  • Yang, Seung-Young;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • To make an automated system for a salt field, it is necessary to measure the salinity and water level of the evaporation site. In this paper, a method to simultaneously measure the salinity and water level by measuring the buoyancy forces of two fixed buoyancy bodies is proposed. The proposed measurement method measures the buoyancy of the main part and reference part when the measuring device is immersed in the salty water, and simultaneously measures the salinity and water level through the sum and difference of the two buoyancy forces. Since there is no mechanical movement in the measurement of buoyancy, measurement errors and maintenance needs can be reduced in the mudy environment of salt field. By applying the proposed method, we developed a system that can simultaneously measure salinity and water level remotely at the evaporation site of a salt field. Through a measurement experiment using a reference salty water having various levels of salinity, the results of a salinity error of 0% and a water level error of 2mm were obtained, and the effectiveness of the proposed salinity and water level measuring device was verified. When an automated system is constructed using the developed salinity and water level measuring device, labor reduction, work environment improvement, and productivity improvement are expected.

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.

A Study on the Rice growing water-management System based on IoT (IoT 기반 벼농사 생장 물 관리 시스템 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.989-994
    • /
    • 2016
  • This study was conducted the management of a water level through the water sensor, the waterline and the drain applied to the rice paddy. The gateway transfers the information to oneM2M(: Machine to Machine) platform of IoT(: Internet of Thing) standards to the height of the water level sensor information through the LoRa connection. Depending on the water level requested by the IoT platform, the gateway is to On or Off waterline or drain motor switch and send the information of the water level sensor. IoT platform performs the intelligent application function according to the condition of the water level.

The Dynamic of Phytoplankton Communities and the Biological Water Quality Assessment at Three Artificial Weirs in Downstream of Namhan-river (남한강 3개 인공보의 식물플랑크톤 군집 변동과 생물학적 수질평가)

  • Shin, Hyun-Joo;Lee, Ok-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.612-621
    • /
    • 2014
  • Physicochemical factors and the phytoplankton communities in the downstream area of Namhan-River were investigated from June 2012 to November 2013. We also assessed water quality using biological water quality indices. Total nitrogen was 2.4 mg/L, total phosphorus was 0.04 mg/L, and biological oxygen demand was 1.1 mg/L. This resulted in a level 2 (Ib, good) water quality rating. A total of 259 phytoplankton taxa were classified, consisting of 26 families, two subfamilies, 64 genera, 222 species, 32 varieties, and five formas. Bacillariophyceae dominated during a1l seasons and at all sites. The dominant species were Aulacoseira granulata, Cyclotella meneghiniana, C. stelligera, Melosira varians, Cocconeis placentula var. lineata, Nitzschia palea, N. amphibia, Cymbella minuta, and Achnanthes convergens. The diatom assemblage index for organic pollution values was level A-D, and TDI was level B-D. P-IBI at most sites was at the M (moderate) level, but TSI was at the E (eutrophic) level. Most indices dropped from upstream to downstream.