• Title/Summary/Keyword: water-cement mix ratio

Search Result 218, Processing Time 0.019 seconds

Pore Size Distribution and Chloride Diffusivity of Concrete Containing Ground Granulated Blast Furnace Slag

  • Moon Han-Young;Kim Hong-Sam;Choi Doo-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.277-282
    • /
    • 2004
  • In a hardened concrete, diffusion of oxygen, carbon dioxide, aggressive ions, and moisture from the environment to the concrete takes place through the pore network. It is well known that making dense cement matrix enhances the durability of concrete as well as all the characteristics including strength of concrete. In this paper,9 mix concretes with water to cementitious material ratio (40,45, and $50\%$) and replacement ratio of GGBFS (40 and $60\%$ of cement by weight) were studied on the micro-pore structure by mercury intrusion porosimetry and the accelerated chloride diffusion test by potential difference. From the results the average pore diameter and accelerated chloride diffusivity of concrete were ordered NPC > G4C > G6C. It is concluded that there is a good correlation between the average pore diameter and the chloride diffusivity, and the mineral admixtures has a filling effect, which increases the tortuosity of pore and makes large pores finer, on the pore structure of cement matrix due to the latent hydraulic reaction with hydrates of cement.

A Comparative Study on Strength Development, Chloride Diffusivity and Adiabatic Temperature Rise of Marine Concrete Depending on Binder Type (결합재 종류에 따른 해양 콘크리트의 강도 발현, 염화물 확산 및 단열온도 상승 특성에 대한 비교 연구)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.411-418
    • /
    • 2013
  • Recently, in order to reduce a damage of chloride attack and hydration heat in marine concrete structures, blended cement in mixing the marine concrete is widely used. Long term strength development is distinct in concrete with blended cement and it also has excellent resistance to chloride attack and reduction of hydration heat. However, blended cement has a characteristic of relatively low compressive strength in early age of 28 days. On the other hand, a high level of compressive strength is required in the Standard Specification for marine concrete mix design. Such concrete mix design satisfying Standard Specification is effective to chloride attack but disadvantageous for hydration heat reduction due to large quantity of binder. In this study, the material properties of marine concrete considering water-binder ratio and binder type are experimentally investigated. Through the research results, compressive strength in blended cement at the age of 56 days is similar although it has smaller compressive strength at the age of 28 days compared with result of OPC (ordinary portland cement). Even though blended cement has a large water-binder ratio and small unit of binder content, chloride ion diffusion coefficient is still small and hydration heat is also found to be reduced. For meeting the required compressive strength in Standard Specification for marine concrete at 28 days, the increased unit content of binder is needed but the increased hydration heat is also expected.

Strength Characteristics of Blast Furnace Slag Concrete (미분말 고로슬래그를 사용한 콘크리트의 강도특성)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.137-143
    • /
    • 1997
  • The objective of this study is to find the strength properties of concrete using blast furnace slag. Its mechanical strength properties investigated include compressive strength, flexural strength, and tensile strength. The main expeirmental variables were cement type, coarse aggregate size(19, 25mm), and water/cement ratio(28, 32, 36%). The principal results obtained from this study are as follows ; it was possible to obtain the compressive strength of $500{\sim}700kg/cm^2$ concrete by using the blast furnace slag. Therefore, blast furnace slag was proved to be superior to ordinary portland cement in manufacturing the high strength concrete with the same mix conditions. In the near furture, concrete using blast furnace slag is expected to be practically used in the field.

  • PDF

Strength Development of Low Heat Portland Cement Concrete according of Substitution of Fly-ash in High Strength Range (플라이 애쉬 치환율에 따른 저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Kim, Tae-Hong;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete according of addition of fly-ash in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and construction.

  • PDF

Field Application of High Strength Concrete under Cold Weather Conditions (650kgf/$\textrm{cm}^2$ 고강도 콘크리트 한중 시공사례)

  • 정재동;노재호;한정호;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.260-265
    • /
    • 1994
  • High strength concrete(65MPa) was used for construction of the bulk cement storage silo by using sliding form. This paper presents mix design, production, quality control and experience with field application of high strength concrete under cold weather conditions. It is shown to be possible to produce high strength concrete of compressive strength of 50~60 MPa by using high-range water reducer to lower w/c ratio with appropriate quality control.

  • PDF

An Experimental Study on the Fluidity Performance and Engineering Properties of Crushed Stone Concrete Using Superplasticizers (고성능 감수제를 사용한 쇄석 콘크리트의 유동화 성능 및 공학적 특성에 관한 연구)

  • 송하영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.16-19
    • /
    • 1990
  • The effect of superplasticizers on the fluidity performance in fresh concrete and physical properties in hardened concrete have been analyzed and investigated under mix proportions of water cement ratio of 0.4, 0.6, crushed stone aggregates, and addition rates of superplasticizers of 0.0, 0.5, 1.0 and 1.5 in the practical range. It is the aim of this study to provide the fundamental data on the workability improvement and engineering properties of crushed stone concrete using superplasticizers comparing with conventional concrete for the practical use and research data accumulation of superplastized concrete.

  • PDF

Effect of Inorganic Pigments on the Workability of Cement Mortars (무기안료가 시멘트모르터의 유동성 미치는 영향)

  • Lee Jae-Yong;Go Seong-Seok;Lee Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.63-70
    • /
    • 2000
  • Since inorganic pigment, among admixtures used for cement composites, can raise the esthetic value of a building due to its effect of coloring, it can be assumed that the quantity consumed is expected to increase in connection with the recent trend of emphasizing the beautiful sights of the city. We carried out a flow test by changing the mix proportion of the cement mortar mixed with an inorganic pigment, water-cement ratio and pigment mixing ratio in order to present the basic materials for utilizing colored cement mortars. In construction by exploring the effect of inorganic pigments on the workability of cement mortar. In case of red pigment mortar and yellow pigment mortar, the workability was found to be rapidly decreased. To secure proper workability, it is necessary to increase the amount of mixing water, or to use superplasticizer. In case of green pigment mortar, however, it recorded $-2.4{\~}6.9{\%}$, showing that there was almost no change in flow. In case of black pigment mortar, it was also confirmed that there is no need to consider workability.

  • PDF

A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions (시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.