• Title/Summary/Keyword: water-bloom

Search Result 439, Processing Time 0.029 seconds

Application of CE-QUAL-W2 to Daecheong Reservoir for Eutrophication Simulation (대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용)

  • Chung, Se Woong;Park, Jae Ho;Kim, Yukyung;Yoon, Sung wan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.52-63
    • /
    • 2007
  • The objectives of this study were to setup a laterally-averaged two-dimensional eutrophication model in Daecheong Reservoir, and to validate the model under two different hydrological conditions; drought year (2001) and wet year (2004). The suggested modeling approach was found to be very effective to simulate the dynamic variations of water temperature, nutrients, dissolved oxygen, and algae in the reservoir. The model satisfactorily replicated the algal bloom that happened between Janggae (Sta.4) and Haenam (Sta.5) during summer of 2001, although the peak concentration was slightly underestimated due to the laterally averaged assumption. The allochthonous phosphorus and algae induced from upstream and So-oak stream during several rainfall events were found to be most significant sources of algal bloom in 2001. In contrast to draught year, the flood events happened during summer months of 2004 tended to remove the hypolimnetic anaerobic conditions and dilute the dissolved phosphorus in the upper reach of the reservoir, and in turn mitigated algal bloom. It implies that the impact of hydrological and hydrodynamic conditions on the reservoir water quality is highly significant, and a drought year may be more vulnerable to algal bloom in the reservoir.

The Relationship between Algae Transport and Current in the Daecheong Reservoir (대청호 유속에 따른 조류이동 영향)

  • Yu, Soon-Ju;Hwang, Jong-Yeon;Chae, Min-Hi;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.887-894
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom every year. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir during the wet season. Nutrients from diffuse sources trigger the propagation of the algal bloom. This study is aimed to analyze relationship between the water current by the simulation and algae transport from the main body in the Daecheong reservoir including tributary where algal bloom has occurred seriously every year. Water quality model CE-QUAL-W2 was applied to analyze water movement in draught season (2001) and flooding season (2003). The result of simulation corresponded with the observed water elevation level, 63~80 m and showed stratification of the Daecheong reservoir. In the draught season, as velocity and direction off low in the reservoir was estimated to affect algae transport including nutrient supply from small tributary, algal blooms occurred in the stagnate zone of middle stream of the reservoir. On the other hand, in the flooding season, it was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. In result, algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control.

Utilizing the grazing effect of fresh water clams (Unio douglasiae) for the remediation of algal bloom during summer

  • Nam, Ki-Woong;Lee, Jeong-Ryul;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The occurrence of 'algal bloom', caused by the mass proliferation of phytoplankton, causes serious problems in streams and lakes in Korea. Therefore, in this study, the phytoplankton filter-feeding trait of Unio douglasiae, a type of freshwater clam, was used to reduce the algal bloom in outdoor water tanks during the summer. This involved the construction of a U. douglasiae cultivation apparatus, wherein 1,000 clams were divided into 8 rectangular baskets arranged in the shape of an empty square. The control tank was manufactured in exactly the same shape within the water tank, but without the addition of clams. The algal bloom-reducing effect of U. douglasiae was confirmed by the measurement of (and comparing between) the water quality at the center and periphery of the test and control cultivation apparatus. Water quality measurements included the measurement of water temperature, pH, turbidity, dissolved oxygen (DO) content, and chlorophyll-${\alpha}$ concentrations; the water quality was measured twice a month between June and November 2014.The results of these analyses did not show a significant difference in water quality (temperature, pH, turbidity, DO) between the center and periphery of the test and control tanks. However, the chlorophyll-${\alpha}$ concentration was observed to be much lower at the center of the test tank compared to that at the center and periphery of the control tank, as well as at the periphery of the test tank. This was believed to be a result of the U. douglasiae surrounding the center of the test tank, which prevented the influx of plankton from the periphery. Accordingly, the results of these analyses suggest the possibility that U. douglasiae cultivation could reduce the proliferation of algal blooms in lakes and streams during the summer. In particular, these results indicate possible improvements in U. douglasiae activity (reduction in algal blooms) by their effective arrangement in the water bodies.

Relationship between Spring Bloom and Sea Ice in the Northern East Sea

  • Park, Kyung-Ae;Choi, Hwa-Jeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.134-134
    • /
    • 2010
  • Sea ices at the Tatarskiy Straitin the East/Japan Sea appear from November to April. Cold and fresh water, melted from the sea ices, may contain nutrients which are indispensable to spring bloom of phytoplankton and may provide a preferable condition to the spring bloom through changes in vertical structure of water column and stratification. Relation between the spring bloom along the Primorye coast and sea ices in the Tatarskiy Strait were investigated using multi-satellite multi-sensor data; ten-year SeaWiFS chlorophyll-a concentration data and PAR data, sea surface temperatures from NOAA/AVHRR, sea ice concentration and near-surface wind speed data from DMSP/SSMI, near-surface wind vectors from QuikSCAT, and others. We provided evidences of southwestward flowing cold water masses from sea ice and its relation of chlorophyll-a concentration. This study showed that year-to-year variations of chlorophyll-a concentration in spring were positively correlated with those of sea ice concentrations at the Tatarskiy Strait.

  • PDF

Comparative assessment on the influences of effluents from conventional activated sludge and biological nutrient removal processes on algal bloom in receiving waters

  • Park, Chul;Sheppard, Diane;Yu, Dongke;Dolan, Sona;Eom, Heonseop;Brooks, Jane;Borgatti, Douglas
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.

Occurrence and Succession Pattern of Cyanobacteria in the Upper Region of the Nakdong River : Factors Influencing Aphanizomenon Bloom (낙동강 상류 수역에서 남조류 발생과 천이패턴 - Aphanizomenon 속을 중심으로 -)

  • Ryu, Hui-Seong;Park, Hae-Kyung;Lee, Hae-Jin;Shin, Ra-Young;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • This study investigated the occurrences and succession patterns of harmful cyanobacteria, as well as environmental factors, during a 3-year period (September 2012 to August 2015) in the upper region of the Nakdong River around Sangju weir. A total of 27 cyanobacterial taxa were observed in this study, and classified into 26 species and 1 variety belonging to 11 genera, 5 families, and 3 orders. Cell density ranged from 24 to 42,001 cells/ml, with a geometric mean of 33 cells/ml, during the survey period. The dominant orders differed depending on the survey year; order Oscillatoriales in 2013, Chroococcales in 2014 and Nostocales in 2015. An Aphanizomenon bloom occurred in June 2015 at which time the highest cell density of 36,873 cells/ml was detected in the upper region of the Nakdong River, where as the Aphanizomenon spp. cell density (190-1,704 cells/ml) had been low prior to that time. An Aphanizomenon bloom also occurred at around the same time downstream in the Young River, a major inflow branch of the Nakdong River. The Aphanizomenon cell density along the Nakdong River increased markedly after joining of the YoungRiver, indicating that the Aphanizomenon bloom in the YoungRiver caused a bloom in the Nakdong River. Meteorological and environmental parameters, such as very low precipitation, higher water temperature, pH, and TP concentration, and lower TN/TP ratio, in May and June of 2015 than in 2013 and 2014 exerted marked effects on the Aphanizomenon bloom in June 2015 in the Young River.

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Developmental Characteristic of Cyanobacterial Bloom in Lake Daecheong (대청호의 남조세균 수화 발달 특성)

  • Park Jong-Geun
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.304-314
    • /
    • 2005
  • The occurrence of cyanobacterial bloom in Korean lakes of the summer is generalized. The characteristic of cyanobacterial community was explored. And the developmental stage of cyanobacterial bloom was divided into three phases, 'preparatory phase', 'bloom phase' and 'extinction phase' Cyanobacterial bloom started during the end of June at site 1, transition Bone of Lake Daecheong. The period of water bloom in normal year was about 60~70 days at site 4, lacustrine Bone, but it was unusually 11 days from July 19 in 1999. M. aerugilnosa first occurred in June, had a peak of standing crop curve from the end of August to the beginning of September in 1998 and 2002 and the end of July in 1999 and 2001. The standing crop of M. aeruginosa occupied $68.1\%$ of phytoplankton, $74.2\%$ of cyanobacteria and $88.8\%$ of genus Microcystis, Anabaena spp. first occurred in April, was above 10,000 cells $mL^{-1}$ from the end of August to about the middle of September in 1998. The effect of rainfalls on cyanobacterial bloom was different according to the phases. The rainfalls of preparatory phase assist the growth of cyanobacteria, but accelerate the decrease of cyanobacteria in extinction phase. In bloom phase, the heavy rainfalls reduce the development of the bloom, while the slight ones display only a little effects.

Effect of reactive oxygen species on floral senescence in Hibiscus syriacus L. (활성산소종이 무궁화 꽃의 노화에 미치는 영향)

  • Seo, Sang-Kyu;Kim, Sun-Hyung;Lee, Gung-Pyo;Kang, Seung-Won
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • To understand the effect of reactive oxygen species (ROS) on floral senescence in Hibiscus syriacus L., we have investigated change in relative water potential, malondialdehyde (MDA) content, H_2O_2 content and the activity of antioxidative enzymes in the petals during flower opening and senescence. Hibiscus flowers were achieved full bloom at early morning and started to in-rolling and showed petal in-rolling over than 50% at 24 h and 36 h after full bloom, respectively. The flower was a decrease in fresh weight by 30% and showed water loss with floral senescence. MDA content and activity of antioxidative enzymes such as APX, GR and CAT were showed no significant change until 36 h after full bloom. In the flower 48 h after full bloom that showed complete petal in-rolling and wilting, however, activity of antioxidative enzymes and H_2O_2 content was greatly increased as compared with 0 h after full bloom. These results suggest that reactive oxygen species are related to accelerating the later senescence more than inducing the early senescence during Hibiscus flower senescence.

Characteristics of Coastal Water Quality after Diatom Blooms Due to Freshwater Inflow (담수유입에 의한 식물플랑크톤의 대량번식 후의 연안 수질변동 특성)

  • Lee Young-Sik;Park Young-Tae;Kim Kui-Young;Choi Yong-Kyu;Lee Pil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.75-79
    • /
    • 2006
  • In order to study the characteristics of water quality in coastal water and mechanism of phytoplankton blooms, factors of water quality were investigated in diatom bloom area due to rainfall event and no diatom bloom area Diatom blooms occurred after heavy rain and the dominant species were Skeletonema costatum($1,200{\sim}5,000cells/mL$) and Thalassiosira spp.($750{\sim}1,200cells/mL$). In diatom bloom area, water temperature, pH, and dissolved oxygen were observed at higher level than in no diatom bloom area Although these two areas were only 20 meters apart from each other, sharp difference in coastal water quality between two areas was observed. In diatom bloom area, concentrations of nitrogen, phosphorus, and silicate were observed at lower level than in no diatom blooms area. This seems to be due to inflow of much trace metal such as Fe, Mo, Se and so on than nitrogen, phosphorus, and silicate by rainfall events. However, distinct differences in DIN/DIP and $DIN/SiO_2-Si$ between these two areas were not observed.

  • PDF