• Title/Summary/Keyword: water-based

Search Result 16,005, Processing Time 0.044 seconds

Development of A Water Quality Management Information System in Reservoirs Using a Web based Water Quality Prediction Model and an Expert System (웹기반 수질예측모델과 전문가시스템을 이용한 저수지 수질관리 정보시스템 개발)

  • Lee, Ju-Seung;Goh, Hong-Seok;Goh, Nam-Yuoung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.527-533
    • /
    • 2005
  • Recently reservoir is polluted by concentrative development of urbanization. Accordingly, the prediction of water quality has import meaning for protecting of water quality pollution. This study was carried out to predict water quality of Gyung Cheon reservoir by WASP5. We have established an integrated system on the basis of web, which predicts the future quality of water through water quality model, WASP5 based on information of water environment in a reservoir for agriculture, uniting expert system which supports the determination to set up measures for improving the quality of water to cope with the result.

  • PDF

Water Treatment Process based on LonWorks System (수처리 공정상의 개방형 네트워크(LonWorks) 적용에 관한 연구)

  • Kim, S.H.;Kim, I.N.;Kwak, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2254-2258
    • /
    • 2003
  • In recent years, the case to install small water treatment facility to every local area has increased. A key issue in the successful implementation of the control systems for the water treatment plants is the choice of control architecture. Within the framework of distributed control system(DCS), this paper presents a new development of intelligent control module and its novel application to open control architecture for water treatment plants. This control system so called NCS(Network Based Control System) with standard networks system with LonTalks protocol of ANSI/EIA 709.1, regulatory control function and information dispatch function has suitable functionality to operate these distributed water treatment facility effectively. This paper describes the case where NCS is applied for the filters system in water treatment facility of Heong Sung area.

  • PDF

Water consumption forecasting and pattern classification according to demographic factors and automated meter reading (인구통계학적 요인 및 원격검침 자료를 활용한 가정용 물 사용패턴 분류 및 물 사용량 예측 연구)

  • Kim, Kibum;Park, Haekeum;Kim, Taehyeon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.149-165
    • /
    • 2022
  • The water consumption data of individual consumers must be analyzed and forecast to establish an effective water demand management plan. A k-mean cluster model that can monitor water use characteristics based on hourly water consumption data measured using automated meter reading devices and demographic factors is developed in this study. In addition, the quantification model that can estimate the daily water consumption is developed. K-mean cluster analysis based on the four clusters shows that the average silhouette coefficient is 0.63, also the silhouette coefficients of each cluster exceed 0.60, thereby verifying the high reliability of the cluster analysis. Furthermore, the clusters are clearly classified based on water usage and water usage patterns. The correlation coefficients of four quantification models for estimating water consumption exceed 0.74, confirming that the models can accurately simulate the investigated demographic data. The statistical significance of the models is considered reasonable, hence, they are applicable to the actual field. Because the use of automated smart water meters has become increasingly popular in recent year, water consumption has been metered remotely in many areas. The proposed methodology and the results obtained in this study are expected to facilitate improvements in the usability of smart water meters in the future.

Effects of Activated Carbon Types and Service Life on Adsorption of Tetracycline Antibiotic Compounds in GAC Process (활성탄 재질 및 사용연수에 따른 Tetracycline계 항생물질 흡착특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Hwang, Young-Do;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.925-932
    • /
    • 2008
  • Adsorption performance of tetracycline antibiotic compounds such as tetracycline(TC), oxytetracycline(OTC), chlortetracycline (CTC) and minocycline(MNC) on granular activated carbon(GAC) was evaluated in this study. The coal-based activated carbon was found to be more effective than other carbons in adsorption of tetracycline antibiotic compounds. The wood-based activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacities(X/M) of coal-based activated carbon for the four tetracycline species was 1.27$\sim$1.36 and 1.69$\sim$1.84 times larger than coconut- and wood-based activated carbon, respectively. Carbon usage rates(CUR) of coal-, coconut- and wood-based activated carbons for tetracycline(TC) were 2.96 g/day, 3.40 g/day and 4.53 g/day, respectively. Similar results were obtained in the adsorption of the rest three tetracycline species. It is concluded that coal-based activated carbon could removed the tetracycline antibiotic compounds better than other material-based activated carbons.

Agent-Based Modeling and Design of Water Reuse Network in Eco-Industrial Park (EIP) (생태산업단지에서 용수재이용 네트워크의 에이전트 기반 모델링 및 설계)

  • Kim, HyunJoo;Yoo, ChangKyoo;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.369-375
    • /
    • 2008
  • To achieve zero-emission, one of the main goals of an eco-industrial park (EIP), it is needed to develop an effective water exchange network. The network includes various subsystems and decision making processes, which make the modeling process extremely complicated. Agent-based modeling was used to simulate water exchange network in an EIP. Firm agents were created based on the behavior pattern of firms, and an agent-based model (ABM) was made with the agents, showing the growth of the exchange network. An existing steel and iron making industrial park was chosen as a case study, and the ABM model shows eco-efficient behavior with a decreased environmental cost. Water reuse network based on the ABM model results in 35% decrease of the fresh water supply and 50% reduction of the wastewater generation in EIP. A case study shows that agent-based model can be a powerful tool in modeling and designing complex eco-industrial parks, especially when a part of the system needs to be changed.

Application of ANFIS for Prediction of Daily Water Supply (상수도 1일 급수량 예측을 위한 ANFIS적용)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. ANFIS, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an application of network-based fuzzy inference system(ANFIS) for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water which supplied in Kwangju city. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supply, (b) the mean temperature, and (c) the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.46% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress (토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향)

  • Han, Su-Hee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

Framework for Deriving Water Quality Criteria of Toxic Substances (수질유해물질에 대한 수질환경기준 설정체계)

  • Chung, Yun-Chul;Ko, Dae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.305-313
    • /
    • 2005
  • In these days, water environment is getting threatened by a variety of toxic pollutants discharged from industries. However, environmental standards and regulations in Korea may be in straitened circumstances to protect the water environment from it. Therefore, the purpose of this review is to compare the management state of the toxic substances in water environment and to present the framework for deriving water quality criteria in USA and Japan. To conserve the water environment from the toxic pollutants more efficiently, the following considerations could be suggested in standards and regulation in Korea. Firstly, there should be consistency of regulated pollutants in drinking water quality standard, water quality standards and permissible wastewater discharge standards. Secondly, in case of deriving the water quality standards, it is required to consider the conservation of the aquatic ecosystem as well as the protection of human health. Finally, it is indispensable to make risk-based approach in management of toxic pollutants in water environment.

A Study on Recognition of the Primary and the Secondary School Teachers on Water Environment Education (물 환경 교육에 대한 초.중등교사의 인식 연구)

  • Sung, Jung-Hee;Park, Tae-Yoon
    • Hwankyungkyoyuk
    • /
    • v.23 no.4
    • /
    • pp.56-69
    • /
    • 2010
  • The purpose of this research is to find out teachers' understanding and recognition about the water and the water environment education and to suggest the strategies of water education at school based on survey results. Results of the study are as follows: First, teachers had high level of water related knowledge and awareness about importance of the water environment education. However, they showed low level of environment educational efforts and environment protection behaviour in daily life. Second, they had a little chance to have the educational training for the water environment education. Third, the water environment education at schools has been made in very restricted areas such as water related scientific knowledge and water pollution. Fourth, teachers pointed out the biggest obstacle for the water environment education would be the lack of teaching materials and the second biggest one was the lack of educational facilities at schools. Based on the survey results, it was found out that in order to improve the water environment education at schools, substantial research by the teachers shall be implemented for all teachers of every subject to build up their capacity in adapting the water education to their subjects.

  • PDF

Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model (IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석)

  • Shin, Yongchu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.