• Title/Summary/Keyword: water wash

Search Result 217, Processing Time 0.03 seconds

An Experimental Study on the Compressive Strength Property of Concrete with Ground granulated Blast Furnace Slag Using Wash Water from Recycled Aggregates (순환골재 세척수를 혼입한 고로슬래그 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • Jung, Sang-Kyung;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.34-35
    • /
    • 2015
  • The purpose of this study is to investigate the compressive strength property of concrete with Ground granulated blast furnace slag(GBFS) using wash water from recycled aggregate. When GBFS is reacted with water, it doesn't happen to hydraulic reaction but GBFS becomes latent hydraulic property in alkaline environment. For this reason, if it is possible to use wash water from recycled coarse aggregate as mixture water, GBFS have the advantage of early strength due to effect of activation. We investigated the compressive strength properties of GBFS concrete using wash water from recycled aggregate. According to the experimentation result, ICP-OES showed wash water from recycled coarse aggregate has a high alkali value of pH of 12. Also, compressive strength in early age using wash water can be improved as an activation.

  • PDF

Evaluation of a Rapid Sand Filter with Surface Wash and Backwash Conditions (정수장 급속여과지 역세척 수위변화와 시간에 따른 세척 효율 평가)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.652-656
    • /
    • 2004
  • Both surface wash and backwash are considered as one of the most important methods that can improve the filtration efficiency in the existing water treatment plant. This study has mainly focused on the improvement of filtering efficiency by controlling surface wash and backwash time, and water level before backwash (when drained up to the trough, when drained up to 10 cm above filter bed, and when drained below 10 cm filter bed). Filtration efficiency was shown a little bit of differences depending on the operating conditions like surface wash injection pressure, the distance control between filter bed and the facility, and the types of surface wash. When the water level before backwash was reached up to 10 cm below filter bed after draining, however, the filtration velocity and the turbidity removal efficiency in the filter bed was improved. When the surface wash followed by backwash is longer, it showed a similar result. Because the proper adjustment of surface washing time makes filtration efficiency higher, therefore, it is necessary to set up the backwash time moderately.

Changes of Surface Characteristics of Polyester Fabrics on the Deposition and the Removal of Oily Soils (I) - The Effect of Wash Cycles on the Water- and Oil-repellent Finished Fabrics in Detergency - (유성오구의 부착과 제거에 있어서 폴리에스테르 직물의 표면특성 변화 (I) -발수발유 가공포의 반복세척 효과-)

  • 이정숙;하희정
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.24-35
    • /
    • 1999
  • This study was carried out to investigate the changes of surface characteristics of polyester fabrics on the deposition and the removal of oily soils from polyester fabrics in detergency, The relations between the removal of soil and the changes of surface properties of polyester fabrics treated with water- and oil-repellent agents were discussed before and after various wash cycles. Two kinds of fluoropolymers were selected as water-and oil-repellent finishing agents. The effects of water- and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respect to contact angle and wicking time. The treatment of polyester fabrics with fluoropolymers improved efficiently water repellency, oil repellency, contact angle and wicking time. But those properties were greatly decreased after 3 times of wash cycles in detergency The deposition of oily soils on the untreated fabrics was drastically increased with increasing of wash cycles. The deposition and the removal of oily soils from fabrics treated with fluoropolymer having hydrophobic components were very low after various wash cycles. The deposition and the removal of oily soils on the fabrics treated with fluoropolymer having hydrophilic components were high comparatively after various wash cycles. Even though the surface properties of treated fabrics were greatly decreased with the increasing of wash cycles, the remains of oily soils on the fabrics were lower than those of untreated fabrics in various wash cycles. But the remains of soils were drastically increased after 10 times of wash cycles in any cases.

  • PDF

Burden of Disease Attributable to Inadequate Drinking Water, Sanitation, and Hygiene in Korea

  • Kim, Jong-Hun;Cheong, Hae-Kwan;Jeon, Byoung-Hak
    • Journal of Korean Medical Science
    • /
    • v.33 no.46
    • /
    • pp.288.1-288.12
    • /
    • 2018
  • Background: Diarrheal and intestinal infectious disease caused by inadequate drinking water, sanitation, and hygiene (WASH) is not only a great concern in developing countries but also a problem in low-income populations and rural areas in developed countries. In this study, we assessed the exposure to inadequate WASH in Korea and estimated the burden of disease attributable to inadequate WASH. Methods: We used observational data on water supply, drinking water, sewage treatment rate, and hand washing to assess inadequate WASH conditions in Korea, and estimated the level of exposure in the entire population. The disease burden was estimated by applying the cause of death data from death registry and the morbidity data from the national health insurance to the population attributable fraction (PAF) for the disease caused by inappropriate WASH. Results: In 2013, 1.4% of the population were exposed to inadequate drinking water, and 1.0% were living in areas where sewerage was not connected. The frequency of handwashing with soap after contact with excreta was 23.5%. The PAF due to inadequate WASH as a cluster of risk factors was 0.353 (95% confidence interval [CI], 0.275-0.417), among which over 90% were attributable to hand hygiene factors that were significantly worse than those in American and European high-income countries. Conclusion: The level of hand hygiene in Korea has yet to be improved to the extent that it shows a significant difference compared to other high-income countries. Therefore, improving the current situation in Korea requires a continuous hand washing campaign and a program aimed at all people. In addition, continuous policy intervention for improvement of sewage treatment facilities in rural areas is required, and water quality control monitoring should be continuously carried out.

Preparation of Instant Powdered Soup Using Oyster Wash Water and Its Characteristics (굴 세척액을 이용한 인스턴트 분말 수프의 제조 및 특성)

  • Kim, Jin-Soo;Heu, Min-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.534-539
    • /
    • 2001
  • To utilize oyster cannery processing waste water effectively, this study was carried out to prepare instant powdered soup using oyster wash water. Instant powdered soup from oyster hot-water extracts (HWE) was prepared by mixing oyster spray-dried hot-water extracts (15 g) with table salt (5 g), cream powder (19 g), milk replacer (12 g), wheat flour (20 g), corn flour (15 g), starch (5 g), glucose (7.5 g) and onion powder (1.5 g). In preparing instant powdered soup from oyster wash water (OWW), powder from oyster spray-dried wash water instead of the spray-dried hot water extracts, was added and other additives were added in proportion to those in the HWE. The OWW consists mainly of carbohydrates (71.1%). It was not different from the instant powdered soup from hot-water extracts. The volatile basic nitrogen, vaible cell counts, coliform group of instant powdered soup from oyster wash water contains 29.4 mg/100g, $4.6{\times}10^4\;CFU/g$, <18 MPN/100g, respectively and its water activity has 0.246. So it was a hygienically safe and conservable instant food. The main fatty acid of OWW was 16 : 0 and 18 : 1n-9. Its chemical score of protein was 59.4% and its main inorganic matter was iron. According to a sensory evaluation, in contrast to the HWE, the OWW had a slightly lower aroma but better taste. It was concluded from the above chemical and sensual evaluation that the oyster wash water can be used as a flavor enhancer for instant powdered soup.

  • PDF

Cleansing effect of the alkaline ionized water on microorganisms of the denture surface (알칼리 이온수의 의치 미생물에 대한 세정효과에 관한 연구)

  • Kim, Young-Mi;Choi, Yu-Sung;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.138-144
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the cleansing effect of recently developed alkaline ionized water, e-WASH, on microorganisms of the denture surface. Materials and methods: Removable partial and complete dentures were randomly assigned to the experimental group of 41 dentures, and the control group of 26. The denture was immersed in the e-WASH solution (experimental group), or tap water (control group) for 5 minutes. The plaque was collected from the denture surface before and after immersion, and smeared on the slide glass. Amount and motility of microorganisms were compared according to the morphology and strain of microorganisms, using the phase contrast microscope. Statistical analysis was accomplished with paired t-test and independent t-test at 95% confidence level (P<.05). Results: 1. The amount of cocci, bacilli, filamentous, spiral/comma, and the motility of bacilli, filamentous, and spiral/comma were decreased after denture cleansing with the alkaline ionized water, e-WASH (P<.05). But in the control group, only the amount of cocci showed a significant difference (P<.05), but no difference from the others. There were no differences in other analysis. 2. In the experimental group, the amount of cocci, bacilli, filamentous, spiral/comma, and the motility of bacilli, filamentous, and spiral/comma were smaller and more inactive compared to the control group (P<.05). Conclusion: These results indicated that the alkaline ionized water, e-WASH could effectively reduce the amount and motility of the experimented microorganisms on the denture surface, and that e-WASH could be recommended as an effective denture cleanser.

Physical Property Change of Old Fabrics Depending on Cleaning Method (출토 직물의 세탁 방법에 따른 물성 변화)

  • 배순화;이미식
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study was to compare the efficiency of four different cleaning method of silk and to fabrics, which were excavated from the sixteenth century tombs. The four cleaning methods were hand washing in water and hand washing in solvent, washing in ultrasonic cleaner, and using of ultrasonic gun after washing in ultrasonic cleaner. The following is the result of the experiment: ㆍBoth silk and jute fabrics shrank the most after hand-wash in water. This cleaning method decreased their thickness the most but changed their strength the least. However, the color of the fabric changed the most after had-wash in water. This washing method might discolor the dyed fabric, so one must check the condition of the fabric thoroughly before washing it. ㆍThe weight and the thickness of the fabric changed little after ultrasonic cleaning. This cleaning method, therefore. is less efficient than hand-water-wash. The use of ultrasonic gun after ultrasonic wash for partial cleansing enhanced the efficiency a little. Nevertheless, this method left stain around the area where the gun was used, and the injected water could damage the fabric. ㆍThe excavated fabric became softer in the cleaning process as the dirt was washed away. In both cases of silk and jute fabrics cleaning, solvent made the fabric softer than water. Washed in solvent, the fabric did not swell. But water penetrated to the fiber during the cleaning process and made the fabric swell. When the water evaporates, the swollen fiber structure collapses and the fabric become stiff. Ultrasonic wash did not cause much change in the flexibility of the fabric, for this method does not remove the dirt as effectively as the other method.

Effect of Ozonated Water and Chlorine Water Wash on the Quality and Microbial De-contamination of Fresh-cut Carrot Shreds (오존수 및 염소수 세척이 신선편이 당근의 품질 및 미생물억제에 미치는 영향)

  • Kim, Ji-Gang;Luo, Yaguang;Lim, Chai-Il
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2007
  • Little information exists on how wash operations affect water quality, or the efficacy of sanitizers on vegetable quality and microbial reduction in fresh-cut carrot shreds. This study evaluated the efficacy of chlorine and ozone in reducing microbial loads and maintaining vegetable quality of carrot shreds. Fresh-cut carrot shreds were teated with various chlorine and ozone concentrations for differing times. The samples were then centrifuged to remove excess water, packaged in film, and stored at $5^{\circ}C$. The result indicated that varying the ozonated water wash time affected microbial growth the development of unpleasant odors, color, and the overall quality of carrot shreds. Ozonated water washing for 20 min maintained vegetable quality by inhibiting unpleasant odors, the development of whiteness, and by reducing microbial populations. A single chlorine water wash was effective and resulted in better vegetable quality when compared with two washes. Samples washed for 20 min in ozonated water, however, had better vegetable quality and smaller microbial counts compared to samples washed once in chlorine water A 20 min ozonated water wash is an attractive method for the maintenance of vegetable quality and shelf-life in fresh-cut carrot shreds.

Reuses Of Wash Water Effluents Of The Ion-Exchanger Units Of Water Demineralization Plant For Economic And Environmental Benefits

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-806
    • /
    • 1995
  • In industrial field, a large volume of regenerants (acid and caustic soda) and their washing effluents are regularly disposed off from the water demineralization plant during regeneration of the ion-exchanger units. Of these waste effluents, a part of the wash water discharged from the single bed Anion and Mixed Bed units can be utilized at a certain stage of their washing cycles when its conductivity is fallen down and becomes considerably less than that of the input raw water. The main aim of this specific waste effluent utilization is to dilute the TDS concentration of the input raw water (fed into the single bed ion-exchanger units) by blending. The achievement is the increase of the longevity of the production cycles of the I.E. units along with the improvement of the production quality and decrease of the regeneration frequencies. As a result, regenerant consumption would be saved because of the reduction of ionic load in feed water which will ultimately reduce the water purification cost. At the same time, the environment pollution will also be protected to a considerable extent. This operational measure is quite effective and useful specially where high TDS water is demineralized only by single bed ion-exchangers. In such case, the water treatment plant is very often found to suffer from both production quality and quantity in addition to carrying out of random and restless regenerations. Proper reuses of the aforesaid wash water effluents of the Anion and MB units excellently minimizes the difficulties experienced in practice. This paper contains the utilities and techniques of reuses of the different kinds of waste effluents of the industrial water treatment plant in addition to the specific reuses of the post-regeneration wash waters of the Anion and MB ion-exchanger units.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.