• Title/Summary/Keyword: water thermal energy

Search Result 1,287, Processing Time 0.024 seconds

A study on the part-load performance of 2-stage water source heat pump (2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구)

  • Lee, Young-Soo;Baik, Young-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF

Strategy of Energy Saving and Thermal Environment Improvement for Intermittent Heating System in Apartment Buildings (공동주택 간헐난방시스템의 에너지 절감 및 열환경 개선방안 연구)

  • Ahn Byung-Cheon;Lee Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.88-93
    • /
    • 2005
  • In this study, the operational characteristics on heating performance and energy consumption for intermittent hot water heating system in apartment buildings were research by simulation. The effects of apartment inlet hot water temperature and operation time per day on energy consumption and indoor thermal environment are investigated. The strategy of energy saving and thermal environment improvement is suggested in comparison with the existing ones.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Design of an Aquifer Thermal Energy Storage System(II) : Thermal Analysis (지하대수층을 이용한 축열시스템의 설계(II) : 열해석)

  • Lee, K.S.;Lee, T.H.;Song, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.315-324
    • /
    • 1994
  • The energy recovery efficiency(ERE) of an aquifer thermal energy storage system was calculated using curvilinear coordinate. The results of the calculation were compared with the experimental results, and agreed within 11% of the discrepancy. The variation of ERE was investigated as a function of the underground water natural velocity, the amount of the stored energy, and period of the energy recovery. The slower the natural velocity and shorter the recovery period, the higher ERE was yielded. Also it was found that increase in the amount of energy storage yields higher ERE, and carries out less influential ERE to the natural velocity. Reiterative usage of the aquifer as a thermal storage tends to gradually increase ERE. The result of this study implements that the aquifer thermal energy storage system is suitable for large cooling/heating loads, such as district cooling/heating.

  • PDF

Thermal Performance of Solar Cooling & Hot-water System According to Control Condition (태양열 냉방 및 급탕 시스템의 제어 조건에 따른 열성능)

  • Lee, Ho;Joo, Hong-Jin;Kim, Sang-Jin;Kwak, Hee-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.214-219
    • /
    • 2008
  • This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.

  • PDF

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

A Study on Analysis of Reserves and Available Capacity of Unutilized Energy in Rural Community (농어촌지역 미활용에너지의 부존량과 이용 가능량 분석)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Kim, Jin-Wook;Lee, Yong-Uk;Bae, Sung-Don;Chae, Kap-Byung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • Alternative sources of energy take a higher interest in order to reduce the greenhouse gas under the Climate Change Convention, fossil fuel consumption, and lower social anxiety about nuclear power such as crisis involving the Fukushima plant, problem of obsolete equipment. The energy consumption of agriculture, forestry and fisheries in South Korea is 3,082,000toe by 2011, reliance on electrical energy(35%) and oil(57.2%) is very high with 92.2%. In this study, we examined reserves and available capacity of temperature difference energy for thermal discharge from plant, treated sewage, river water, dam, and agricultural reservoir in rural community. Reserves of unutilized energy are 455,735Tcal/yr in rural community, these accounts for 78% of total reserves 582,385Tcal/y. Thermal discharge from plant has the most reserves of unutilized energy in rural community, it is estimated that it has the reserves of 277,410Tcal/y. Available capacity of unutilized energy in rural community is total 134,147Tcal/y, thermal discharge from plant available for heating is the most 128,035Tcal/y, and it shows in the order of treated sewage 4,318Tcal/y, river water 1,653Tcal/y, and reservoir 141Tcal/y. Elevating temperature area of green house by 2012 is 21,208ha. The amount of energy required for heating the greenhouse a year is dbout 11,365Tcal/y with 8.5% of the total available capacity of unutilized energy.

MAJOR THERMAL-HYDRAULIC PHENOMENA FOUND DURING ATLAS LBLOCA REFLOOD TESTS FOR AN ADVANCED PRESSURIZED WATER REACTOR APR1400

  • Park, Hyun-Sik;Choi, Ki-Yong;Cho, Seok;Kang, Kyoung-Ho;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.257-270
    • /
    • 2011
  • A set of reflood tests has been performed using ATLAS, which is a thermal-hydraulic integral effect test facility for the pressurized water reactors of APR1400 and OPR1000. Several important phenomena were observed during the ATLAS LBLOCA reflood tests, including core quenching, down-comer boiling, ECC bypass, and steam binding. The present paper discusses those four topics based on the LB-CL-11 test, which is a best-estimate simulation of the LBLOCA reflood phase for APR1400 using ATLAS. Both homogeneous bottom quenching and inhomogeneous top quenching were observed for a uniform radial power profile during the LB-CL-11 test. From the observation of the down-comer boiling phenomena during the LB-CL-11 test, it was found that the measured void fraction in the lower down-comer region was relatively smaller than that estimated from the RELAP5 code, which predicted an unrealistically higher void generation and magnified the downcomer boiling effect for APR1400. The direct ECC bypass was the dominant ECC bypass mechanism throughout the test even though sweep-out occurred during the earlier period. The ECC bypass fractions were between 0.2 and 0.6 during the later test period. The steam binding phenomena was observed, and its effect on the collapsed water levels of the core and down-comer was discussed.

Empirical model to estimate the thermal conductivity of granite with various water contents (다양한 함수비를 가진 화강암의 열전도도 추정을 위한 실험적 모델)

  • Cho, Won-Jin;Kwon, Sang-Ki;Lee, Jae-Owan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.