• Title/Summary/Keyword: water source

Search Result 4,393, Processing Time 0.042 seconds

A Study on the Variation of Ground Water Temperature for Development of Ground Water Source Heat Pump (지하수 열원 열펌프 개발을 위한 지하수 온도의 변화 특성 연구)

  • Nam Hyun Kyu;Kim Youngil;Seo Joung Ah;Shin Younggy
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ground water source heat pumps are clean, energy-efficient and environment-friendly systems for cooling and heating. Although the initial cost of ground water source heat pump system is higher than that of air source, it is now widely accepted as an economical system since the installation cost can be returned within a short period of time due to its high efficiency. In a ground water source heat pump system, the variation of the ground water temperature is an important factor that influences the system performance. In this study, variation of the ground water temperature of a single well system is studied experimentally for various operating conditions. When ground water flow exists in the underground, the returned water exchanges heat efficiently with the ground and the temperature of the ground water remains nearly constant. Hence the short circuit problem is minimized. If an active flow of ground water flow exists in the underground, a singe well heat pumps system will be free of short circuit problem and can operate with high performance.

  • PDF

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation (물-공기 히트펌프 시스템의 부분부하 난방운전 특성)

  • Cho, Yong;Lee, Nam Young;Kim, Yong Yeol;Kim, Dea Geun;Jung, Eung Tai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF

An Experimental Study on the Part-Load Performance of a River Water Source 2-Stage Heat Pump (하천수 열원 2단 압축 열펌프시스템의 부분부하 운전특성에 관한 실험적 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1964-1968
    • /
    • 2007
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. Although its better performance, the large temperature difference between load and source makes system performance worse by nature. In this study, 2-stage compression is considered as the solution of this problem. Generally, heat pump is designed for maximum capacity rate, but it actually operates at part load condition in many cases. Therefore, an information on the part-load character is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes. The experimental results show that the system performance is influenced by the part load rates, river water temperature, load temperature, etc.

  • PDF

A study on the part-load performance of 2-stage water source heat pump (2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구)

  • Lee, Young-Soo;Baik, Young-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF

Assessing Impact of Reduction of Non-Point Source Pollution by BASINS/HSPF (HSPF를 이용한 비점오염원 삭감에 따른 효과 분석)

  • Bae, Dae-Hye;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to assessing impact of reduction of non-point source pollution in the Bokha Stream watershed. The BASINS/HSPF model was calibrated and verified for water flow and water qualities using Total Maximum Daily Load 8days data from 2006 to 2007. Accuracy of the BASINS/HSPF models in simulating hydrology and water quality was compared and there were somewhat differences of statistical results, but water flow and water quality were simulated in good conditions over the study period. The applicability of models was tested to evaluate non-point source control scenarios to response hydrology and water quality in the Bokha stream using various measures which include BMPs approach and change of landuse. The evaluation of reduction of non-point source pollution was developed using load-duration curve. Despite strong reduction of non-point source, there are not satiated target quality at low flow season.

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.