• Title/Summary/Keyword: water removal

Search Result 4,225, Processing Time 0.033 seconds

VOCs Removal in Drinking Water Treatment Process by Ozonation (오존산화에 의한 수처리공정에서 VOCs의 제거 특성)

  • Han, Myung-Ho;Choi, Joon-Ho;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

An Analysis of Design Factors for Developing Opuntia Humifusa Spines Removal Device

  • Jang, Ik Joo;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-221
    • /
    • 2013
  • Purpose: Opuntia Humifusa has been used in the food and beauty industry after removing spines and glochids clearly. This study compared the methods used in removing spines and analyzed the design factors for developing a spine removal device. Method: This study compared the spine removal ratios in accordance with the length of brush, water spray pressure, the number of water spray, and the size of Opuntia Humifusa in a rotating brush device and a water spray device. In addition, this study compared the reversal ratios according to the inclination angle of a conveyor, the drop height of Opuntia Humifusa, and the speed of the conveyor to analyze the reversal factors. Results: The spines were not removed clearly in the rotating brush method, and the glochids were nailed deeply. The spine removal ratio was 96.9% with the water spray pressure of 20 $kgf/cm^2$ and the conveyor speed of 10 cm/s in the water spray method. The number of water spray was correlated with the spine removal ratio, and the average spine removal ratio was 95.6% with three cycles of water spray. The reversal ratio was 97% with the inclination angle of the conveyor $20^{\circ}$, the drop height of 380 mm, and the conveyor speed of 10 cm/s. Conclusions: In order to develop a Opuntia humifusa spine removing device, this study compared the rotating brush and water spray methods. As a result, each spine removal performance of the rotating brush and water spray methods was 96.9% and 95.6%, respectively. Although the performance of the rotating brush method was slightly higher than that of the water spray method, the water spray method was suitable for removing spines from stem because the epidermis of stem was damaged and the glochids were nail deeply in the rotating brush method. Further studies on appropriate arrangement of spray nozzles, maintaining the optimal water spray pressure, the speed and angle control of the feeding conveyor, and devices for inducing the stem to the center will be needed in combining the water spray device and the reversal device.

Natural Radon Removal Efficiency of Small-scale Water Supply System (국내 마을상수도 지하수의 라돈 자연저감)

  • Cho, Byong-Wook;Yun, Uk;Choo, Chang-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • The purpose of this study was to understand the degree of natural radon removal efficiency of small-scale water supply systems. Six sites were selected for this study, and data on well characteristics (depth, pumping rate, water tank capacity, distance from well to tap water) were obtained. Water samples both from raw water and three tap waters at each site were collected and analyzed for radon concentration. Average radon removal efficiency of the five sites (A-E) in Nov. 2006 was 26.0% while that of the same sites in Dec. 2006 was 45.6% indicating seasonal difference in natural radon removal efficiency. Meanwhile short-term (April 23, April 30, May 8, 2007) radon removal efficiency from the site F was 44.1-49.0%, implying only a little difference in natural radon removal efficiency. The degree of radon removal at tap water was influenced mainly by pumping rate rather than distance from the well and water tank capacity.

The Removal Rate of the Constituents of the Litters in the Aquatic Plant Ecosystems I. Phragmites longivalvis Grasslands in a Delta of the Nakdong River (수생식물 생태계에 있어서 낙엽의 구성성분의 유실률 I. 낙동강 삼각주지역의 갈대 초지)

  • 장남기;오경환
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.331-342
    • /
    • 1995
  • An investigation was performed to reveal the removal rates of organic constituents of the litters in a Phragmithea longivalvis grassland in a Delta of the Nakdong River, The removal rates of the inorganic and organic materials are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each organic constituent were calculated using these new models. The removal rates of cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein were 2.67, 1.39, 1.25, 1.02, 0.92, 0.49 and 0.47, respectively, The periods required to reach half time to the steady state of the removal and accumulation for cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein of the litter were 0.26, 0.50, 0.55, 0.68, 0.75, 1.41 and 1.48 years, respectively.

  • PDF

Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;임영성;허종수
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

Development of Optimal Septic Tank in the Countries of Water Shortages (물 부족국가에서 활용가능한 정화조의 최적모형 개발)

  • Lim, Bong-Su;Jing, Hai-Long
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.418-427
    • /
    • 2015
  • This study was carried out to evaluate the performance of a lab-scale novel septic tank system for improving the conventional septic tank in the developing countries of water shortages. The lab-scale novel septic tank system consists of sepetic tank, aeration tank with HBC-ring, and sand filter. Optimum HRT was reguired about 1.5days to get a total COD removal efficiency of 90%, COD, BOD and SS removal efficiency was about 70%, 60%, and 85% in sepetic tank only. The structure of sepetic tank with two stages results in the high removal efficiency of organic matter. When sepetic tank, aeration tank, and sand filter were more than HRT 1.5days, 18hrs, and 12hrs, respectively, final effluent was less than 20 mg/L of BOD, 14 mg/L of SS, so that there is a high potential of its use for reusing water in flush toilet. There is no significant effect of HRT change on nutrient removal. Total nitrogen removal efficiency was about 40%, final effluent was 30~40 mg/L of TN, total phosphorus removal efficiency was about 11~25%, final effluent was 9~12 mg/L of TP. Because there is very small amounts of organic nitrogen and phosphorus in effluent, it was possible to reuse water for agricultural use.

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

A Study on the Removal Characteristics of Microcystin in the Water Treatement Plant by Ozonation (오존산화에 의한 정수장의 Microcystin제거 특성에 관한 연구)

  • 김민규;권재현;조영하;이진애;권오섭
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.74-83
    • /
    • 2003
  • Microcystin, stable compounds with circular heptapeptides, is presented inside cyanobacterial cell. So far, over 30 types have been known to exist and microcystin-LR, RR among them are the most potent toxin compound. By this reason, a strong oxidant, ozone was used in this study to remove the microcystins produced by cyanobacteria. Removal efficiency of microcystin at M water treatment plant was also evaluated. Microcystin concentration was determined by protein phosphatase inhibition assay. The results showed that dissolved microcystin in raw water detected in the range of 0.011-0.028 ㎍ Microcystin-RR equivalent/l. Above 98% of microcystin was removed through overall treatment system. Therefore, the water treatability of M treatment plant seemed to be excellent. Removal efficiency of microcystin according to unit process varied as characteristics of raw water such as DOC, UV/sub 254/ and turbidity. Removal efficiency of microcystin by ozonation was investigated in laboratory according to contact time and ozone dose. Dissolved microcystin was increased by twice fold according to ozone contact time, but increased by fifth fold according to ozone dose. So, changing of ozone dose more affected microcystin release than changing of ozone contact time. Behavior of microcystin by ozonation was similar to that of DOC, and residual ozone concentration gave influence to removal ratio of microcystin. In conclusion, single ozone treatment wasn't effective on microcystin removal in case of water containing a lot of cells. Therefore, it's more effective to use ozonation process after the removal of cyanobacterial cells in advance.

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.