• Title/Summary/Keyword: water quality modeling

Search Result 444, Processing Time 0.032 seconds

The Effects of DEM Resolution on Hydrological Simulation in BASINS-HSPF Modeling

  • Jeon, Ji-Hong;Yoon, Chun-Gyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.453-456
    • /
    • 2002
  • In this study, the effect of DEM resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using BASINS (Better Assessment Science Integrating point and Nonpoint Source) for Heukcheon watershed (303.3km2) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might effects on the simulation of water quantity and quality. The area weighted average watershed slope became lower but the length weighted average channel slope became higher as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation DEM mesh size of 100m is recommended for this watershed.

  • PDF

1차원 현장 soil column 실험을 통한 SAT 반응 모델 검증

  • ;Jeongkon Kim
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.83-86
    • /
    • 2003
  • Soil Aquifer Treatment (SAT) is a technique in which secondary- or tertiary-treated wastewater is infiltrated through unsaturated soil and stored in the saturated zone. In SAT, contaminants are removed by physical and biochemical reactions taking place in soils. In this study, a numerical model was developed to predict changes in water quality during SAT operations. The contaminant species considered in the model were ammonium, nitrate, dissolved organic carbon, and dissolved oxygen. The model was calibrated against experimental data obtained from one dimensional soil column tests conducted for 84 days. The calibrated model will be used to find out optimum conditions for the pilot- and regional-scale SAT operations to be scheduled for the next phase of this project.

  • PDF

A Numerical Modelling for the Prediction of Phase Transition Time(Ice-Water) in Frozen Gelatin Matrix by Ohmic Thawing Process

  • Kim, Jee-Yeon;Park, Sung-Hee;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.407-411
    • /
    • 2004
  • Ohmic heating occurs when an electric current is passes through food, resulting in a temperature rise in the product due to the conversion of the electric energy into heat. The time spent in the thawing is critical for product sterility and quality. The objective of this study is to conduct numerical modelling between the effect of ohmic thawing intensity on PTT(phase transition time) at constant concentration and the effect of matrix concentrations on PTT at constant voltage condition. the stronger ohmic thawing intensity resulted in decreasing the PTT. High ohmic intensity causes short PTT. And the higher gelatin concentration, the faster increment of PTT. A numerical modeling was executed to predict the PTT influenced by the power intensity using exponential regression and the PTT influenced by gelatin concentration using logarithmic regression. Therefore, from this numerical model of gelatin matrix, it is possible to estimate exact values extensively.

  • PDF

An Analysis on the Planning and Design of New York City Waterfront Comprehensive Plan Using the GIS - Focused on the Comprehensive Waterfront Plan in 1992 and 2011 - (공간정보체계를 활용한 뉴욕시 워터프런트 종합계획의 도시계획 특성 분석 - Comprehensive Waterfront Plan을 중심으로 -)

  • Na, In Su;Cinn, Eungee
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This study aims at finding issues and ideas of waterfront planning through analysing planning concepts and characteristics of New York City Waterfront Comprehensive Plan(NYC WCP). The first NYC WCP in 1992 divided waterfront area as 4 functional areas which are natural, public, working and redeveloping waterfront. The characteristics of WCP in 1992 are zonning, height, setback, public access, visual corridor, floor area and so forth. After then NYC WCP revision in 2011 intergrated and developed the former plan through the eight visions which are expanding public access, enlivening the waterfront, improving water quality, restoring the natural waterfront, enhancing the Blue Network, improving government oversight and increasing climate resillience. In conclusion, NYC WCP successfully achieved both sufficient capacity of planning concepts and design guidelines for each region.

Development of the wet and dry treatment using quadtree grids (사면구조 격자를 이용한 이동경계 기법 개발)

  • Kim, Jong-Ho;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.183-186
    • /
    • 2008
  • All measures to cope with flooding rely on flood predictions to some extent, and the effectiveness of these measures is dependent on the quality of flood predictions. It is important to track properly the movements of the river-bankline in numerical modeling because the location of it varies continuously in the flood inundation. In this study, the wet and dry treatment is used to describe the moving river-bankline accurately (Cho, 1996). An oscillatory flow motion in a parabolic basin is used to validate the performance of the developed model based on quadtree grids. As a result of a simulation, a reasonable agreement is observed with analytical and Cho's results.

  • PDF

Application of NAPRA WWW for Modeling Surface Water Quality (지표수질 모의를 위한 NAPRA WWW 시스템의 적용)

  • Lim, Kyoung-Jae;Engel Bernard A.;Kim, Ki-Sung;Choi, Joong-Dae
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.4 s.25
    • /
    • pp.55-64
    • /
    • 2004
  • National Agricultural Pesticide Risk Analysis (NAPRA) WWW 시스템 (http://pasture.ecn.purdue.edu/${\sim}napra$)은 각기 다른 영농방법이 지표수질, 유사, 그리고 지하수질에 미치는 영향을 평가하기 위하여 개발되었다. 이 NAPRA WWW 시스템은 Total Maximum Daily Loads와 같은 수질 요건을 만족시킬 수 있는 최적영농 방법이 무엇인지 찾는데, 그리고 수질측면에서 취약한 지역을 찾아내는데 매우 효율적인 시스템이다. 이 NAPRA WWW 시스템을 이용하여 미국 인디애나주의 수계에 대해서, NAPRA 모의 Nitrogen과 Atrazine 결과를 실측치와 비교하였다. 18개 수계에 대해서 NAPRA 예측 질소값과 실측 질소값을 비교한 결과 $R^2$ 값은 0.51이고, 6개 수계에 대해서 NAPRA 예측 Atrazine값과 실측값을 비교한 결과 $R^2$ 값은 0.87이었다. 이 연구에서 보여지는 바와 같이 NAPRA WWW 시스템은 수계내에서 질소와 Atrazine에 따른 오염지역을 찾아내는데 효율적으로 사용될 수 있는 시스템이다.

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

Development of a Sustainable First Flush Management System for Urban Stream Water Quality Management (도시 하천 수질 관리를 위한 지속가능 초기 강우 오염 관리 시스템의 개발)

  • Seo, Dongil;Lee, Tongeun;Kim, Jaeyoung;Koo, Youngmin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.247-255
    • /
    • 2016
  • Non-point pollutants from surface runoff during rainfall exert adverse effects on urban river water quality management. In particular, the first flush effect during the initial phase of rainfall can deliver significant amounts of pollutant loads to surface waters with extremely high concentrations. In this study, a sustainable first flush effect management system was developed by using settling and filtration that require no additional power or chemicals. A pilot scale experiment has shown that the removal of total suspended solid (TSS), total nitrogen (TN) and total phosphorus (TP) are in ranges of 84 - 95%, 31 - 46%, and 42 - 86%, respectively. An Integrated Stormwater Runoff Management System (ISTORMS) was also developed to efficiently manage the developed system by linking weather forecast, flow rate and water quality modeling of surface runoff and automatic monitoring systems in fields and in the system. This study can provide effective solutions for the management of urban river in terms of both quantity and quality.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.102-106
    • /
    • 2008
  • This study is to evaluated the impact of varying spatial resolutions of DEM (2 m, 10 m, and 30 m), land use (QuickBird, 1/25,000 and Landsat), and soil data (1/25,000 and 1/50,000) on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, sediment, T-N, and T-P transport in a small agricultural watershed ($1.21\;km^2$). SWAT model was adopted and the model was calibrated for a $255.4\;km^2$ watershed using 30 m DEM, Landsat land use, and 1/25,000 soil data. The model was run with the combination of three DEM, land use, and soil map respectively. The SWAT model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality (SS, T-N, T-P) records from 1999 to 2000, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and the root mean square error were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow.

  • PDF

Development and Evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) Fix Module from Low Resolution DEM (저해상도 DEM 사용으로 인한 SWAT 지형 인자 추출 오류 개선 모듈 개발 및 평가)

  • Kim, Jong-gun;Park, Youn-shik;Kim, Nam-won;Chung, Il-moon;Jang, Won-seok;Park, Jun-ho;Moon, Jong-pil;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model have been widely used in simulating hydrology and water quality analysis at watershed scale. The SWAT model extracts topographic feature using the Digital Elevation Model (DEM) for hydrology and pollutant generation and transportation within watershed. Use of various DEM cell size in the SWAT leads to different results in extracting topographic feature for each subwatershed. So, it is recommended that model users use very detailed spatial resolution DEM for accurate hydrology analysis and water quality simulation. However, use of high resolution DEM is sometimes difficult to obtain and not efficient because of computer processing capacity and model execution time. Thus, the SWAT Topographic Feature Extraction Error (STOPFEE) Fix module, which can extract topographic feature of high resolution DEM from low resolution and updates SWAT topographic feature automatically, was developed and evaluated in this study. The analysis of average slope vs. DEM cell size revealed that average slope of watershed increases with decrease in DEM cell size, finer resolution of DEM. This falsification of topographic feature with low resolution DEM affects soil erosion and sediment behaviors in the watershed. The annual average sediment for Soyanggang-dam watershed with DEM cell size of 20 m was compared with DEM cell size of 100 m. There was 83.8% difference in simulated sediment without STOPFEE module and 4.4% difference with STOPFEE module applied although the same model input data were used in SWAT run. For Imha-dam watershed, there was 43.4% differences without STOPFEE module and 0.3% difference with STOPFEE module. Thus, the STOPFEE topographic database for Soyanggang-dam watershed was applied for Chungju-dam watershed because its topographic features are similar to Soyanggang-dam watershed. Without the STOPFEE module, there was 98.7% difference in simulated sediment for Chungju-dam watershed for DEM cell size of both 20 m and 100 m. However there was 20.7% difference in simulated sediment with STOPFEE topographic database for Soyanggang-dam watershed. The application results of STOPFEE for three watersheds showed that the STOPFEE module developed in this study is an effective tool to extract topographic feature of high resolution DEM from low resolution DEM. With the STOPFEE module, low-capacity computer can be also used for accurate hydrology and sediment modeling for bigger size watershed with the SWAT. It is deemed that the STOPFEE module database needs to be extended for various watersheds in Korea for wide application and accurate SWAT runs with lower resolution DEM.