• 제목/요약/키워드: water quality model

검색결과 1,671건 처리시간 0.034초

오염총량관리제도의 TOC 목표수질 설정 방안 (Establishment of Target Water Quality for TOC of Total Water Load Management System)

  • 김용삼;이은정
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.520-538
    • /
    • 2019
  • In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.

A Technology for Water Pollution Diffusion Prevention based on Web Map

  • Shin, Jin Seob
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권11호
    • /
    • pp.65-71
    • /
    • 2017
  • An integrated water environment management system is necessary in improving water quality, properly allocating water resources, and supporting socio-economic development. Specifically, water quality management system using web map can be an efficient approach to accomplish this system. This paper aims to construct a dynamic water quality management system to reflect a water environment management system which includes three sub-models with consideration of their interrelationships (a socio-economic model based on dynamic Input-Output model, a water resources cycle model, and a water pollutants flow model). Based on simulation, the model can precisely estimate trends of water utilization, water quality, and economic development under certain management targets, and propose an optimal plan. This study utilized the model to analyze the potential of using reclaimed water to accomplish local water environment management and sustainable development plan while exploring the applicable approaches. This study indicates that the constructed water environment management system can be effective and easily adopted to assess water resources and environment while improving the trade-off between economic and environment development, as well as formulate regional development plan.

영일만내의 유동과 수질특성에 관한 연구 (Study on Current and Water Quality Characteristics in Yongil Bay)

  • 김헌덕;김종인;류청로
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.28-37
    • /
    • 2001
  • The water quality in Yongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex. The study aims to simulate the current system that is necessary to build ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D model baroclinic model which considers tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most applicable on appearing the current system of the stratificated Yongil Bay difference of density. Form the results of simulation considered tidal current only, it can be clarified that the water body flows in the inner bay through the bottom layer and flows out the outer bay through the surface layer in Yongil Bay. And the fresh water from the Hyongsan river and the thermal discharge form POSCO have a little effect on the current system in Yongil Bay, but the diffusion of heat and salt has an important effect upon the formation of the density stratification of the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system in Yongil Bay.

  • PDF

충주호 수질변동의 추계학적 특성 (Stochastic Characteristics of Water Quality Variation of the Chungju Lake)

  • 정효준;황대호;백도현;이홍근
    • 한국환경보건학회지
    • /
    • 제27권3호
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of water quality variation were predicted by stochastic model in Chungju dam, north Chungcheong province of south Korea, Monthly time series data of water quality from 1989 to 2001;temperature, BOD, COD and SS, were obtained from environmental yearbook and internet homepage of ministry of environment. Development of model was carried out with Box-Jenkins method, which includes model identification, estimation and diagnostic checking. ACF and PACF were used to model identification. AIC and BIC were used to model estimation. Seosonal multiplicative ARIMA(1, 0, 1)(1, 1, 0)$_{12}$ model was appropriate to explain stochastic characteristics of temperature. BOD model was ARMa(2, 2, 1), COD was seasonal multiplicative ARIMA(2. 0. 1)(1. 0, 1)$_{12}$, and SS was ARIMA(1, 0, 2) respectively. The simulated water quality data showed a good fitness to the observed data, as a result of model verification.ion.

  • PDF

최적화기법을 이용한 황구지천유역의 오염부하량 할당 (Waste Load Allocation of Hwanggujicheon Watershed Using Optimization Technique)

  • 조재현;정욱진;이종호
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.728-737
    • /
    • 2005
  • Water quality of the Hwanggujicheon is poor because of the rapid housing and development in the large area of the basin. Establishment of water quality management strategy, based on the pollution sources survey and pollutant loads estimation, has to be established for the preservation of the stream water quality of the region. In this study, waste load allocation model to achieve the water quality goal of the stream and the optimization of pollutant load reduction, was developed. Nonpoint pollutant loads calculated by runoff model in the previous study are utilized for pollutant loads estimation of the drainage areas in this study. From the application result of the allocation model, water quality goals of the Hwanggujicheon that can be achieved as a matter of fact are BOD 8 mg/L. To achieve these goals, 23% of effluent BOD loads have to be reduced in the basin.

유전자 알고리즘과 회귀식을 이용한 오염부하량의 예측 (Estimation of Pollutant Load Using Genetic-algorithm and Regression Model)

  • 박윤식
    • 한국환경농학회지
    • /
    • 제33권1호
    • /
    • pp.37-43
    • /
    • 2014
  • BACKGROUND: Water quality data are collected less frequently than flow data because of the cost to collect and analyze, while water quality data corresponding to flow data are required to compute pollutant loads or to calibrate other hydrology models. Regression models are applicable to interpolate water quality data corresponding to flow data. METHODS AND RESULTS: A regression model was suggested which is capable to consider flow and time variance, and the regression model coefficients were calibrated using various measured water quality data with genetic-algorithm. Both LOADEST and the regression using genetic-algorithm were evaluated by 19 water quality data sets through calibration and validation. The regression model using genetic-algorithm displayed the similar model behaviors to LOADEST. The load estimates by both LOADEST and the regression model using genetic-algorithm indicated that use of a large proportion of water quality data does not necessarily lead to the load estimates with smaller error to measured load. CONCLUSION: Regression models need to be calibrated and validated before they are used to interpolate pollutant loads, as separating water quality data into two data sets for calibration and validation.

1차원 비정상상태 하천수질모의를 위한 KORIV1-WIN 개발 (Development of One-Dimensional Unsteady Water Quality Model for River)

  • 정세웅;고익환;김남일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.563-567
    • /
    • 2004
  • During drought season, the self-purification capacities of the four major rivers in Korea are significantly controlled by environmental maintenance flows supplied from the mid- or upstream large dams. Therefore, it is obviously important to operate the dams considering not only water quantity aspects but also conservation of downstream water quality and aquatic ecosystems. Mathematical water quality models can be efficiently used to serve as a decision support tool for evaluating the effects of operational alternatives of upstream dams on the downstream aquatic environment. In this study, an unsteady one-dimensional water quality model, KORIV1-WIN was developed based on the theoretical and numerical algorithms for hydrodynamics and water quality simulations of CE-QUAL-RIV1. It consists of hydrodynamic(KORIV1H) and water quality(KORIV1Q) modules, and pre- and post-processors for input data preparations and output displays. The model can be used to predict one-dimensional hydraulic and water quality variations in rivers with highly unsteady flows such as dam outflow change, rainfall-runoff, and chemical spill events.

  • PDF

1차원 수질 예측 모형의 검보정 자동화 시스템 개발 및 낙동강에서의 적용 (Development of 1-Dimensional Water Quality Model Automatizing Calibration-Correction and Application in Nakdong River)

  • 손아롱;한건연;박경옥;김병현
    • 환경영향평가
    • /
    • 제20권5호
    • /
    • pp.765-777
    • /
    • 2011
  • According to the total pollution load management system, exact prediction and analysis of water quality and discharge has been required in order to allocate the amount of pollution load to each local government. In this study, QUAL2E model was used for comparison with other water quality models and improve the inadequate to forecast future water quality. And Various calibration and verification methods were applied to deal with existing uncertainties of parameter during modeling water quality. For user convenience, A GUI(Graphical User Interface) system named "QL2-XP" model is developed by object-oriented language for the user convenience and practical usage. Suggested GUI system consist of hydraulic analysis, water quality analysis, optimized model calibration processes, and postprocessing the simulation results. Therefore this model will be effectively utilized to manage practical and efficient water quality.

동적모델을 이용한 수질오염총량제 목표수질 설정 및 할당부하량 산정방안 연구 (The Study on Methods for Setting of Water Quality Goal and Estimation of Allocation Loads on TMDL System Using a Dynamic Water Quality Model)

  • 김은정;박배경;신동석;김용석;류덕희
    • 대한환경공학회지
    • /
    • 제36권9호
    • /
    • pp.629-640
    • /
    • 2014
  • 본 연구에서는 동적모델의 수질오염총량제 적용성을 검토하였으며, 동적모델을 이용한 목표수질 설정 및 할당부하량 산정 방법을 제시하고 그 결과를 분석하였다. 동적모델 중 HSPF 유역모형을 미호천 유역에 대하여 구축하였으며, 보정 결과 구축된 모형은 2009년~2010년에 대하여 일유량 변화와 BOD 농도 변화를 잘 재현하는 것으로 판단되었다. 동적모델을 이용한 수질오염총량제 적용 방안은 3가지 case; (1)저수기 조건을 고려한 수질관리 방법(Case I), (2)연중 전 기간을 고려한 수질관리 방법(Case II), (3)연중 최악의 수질조건을 고려한 수질관리 방법(Case III)으로 나누어 제시하였다. 미호천 유역 말단에서 각 조건에 따른 BOD 목표수질을 산정한 결과는 Case II(4.2 mg/L) < Case I(5.0 mg/L) < Case III(7.8 mg/L) 순으로 연중 전 기간을 고려한 경우에서 가장 낮고 최악조건을 고려한 경우에서 가장 높았다. 할당부하량은 Case II > Case I > Case III 순으로 높게 나타났으며 최악조건을 고려한 경우에서 가장 엄격한 할당부하량이 산정되었다. 기준 강우 선정 및 비점오염원의 모델 적용방식 등에 대한 추가연구가 필요하며, 이들이 반영된다면 수질오염총량제에 동적모델을 적용함으로 인해 좀 더 합리적이고 과학적인 수질관리가 이루어질 것이라 사료된다.

BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구 (Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model)

  • 강형식;장재호
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.