• Title/Summary/Keyword: water quality change

Search Result 1,226, Processing Time 0.03 seconds

Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed (<2009 SWAT-KOREA 컨퍼런스 특별호 논문> 기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링)

  • Park, Jong-Yoon;Park, Min-Ji;Ahn, So-Ra;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.877-889
    • /
    • 2009
  • This study is to assess the future potential impact of climate change on stream water quality for a 6,581.1 km$^2$ dam watershed using SWAT (Soil and Water Assessment Tool) model. The ECHAM5-OM climate data of IPCC (The Intergovernmental Panel on Climate Change) A2, A1B, and B1 emission scenarios were adopted and the future data (2007-2099) were corrected using 30 years (1977-2006, baseline period) weather data and downscaled by Change Factor (CF) method. After model calibration and validation using 6 years (1998-2003) observed daily streamflow and monthly water quality (SS, T-N, and T-P) data, the future (2020s, 2050s and 2080s) hydrological behavior and stream water quality were projected.

On the Characteristics of the Water Quality Changes due to the Development Phases of Pusan Port (부산항의 개발단계별 수질환경변동특성에 관한 연구)

  • 고영찬;김종인;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.11-19
    • /
    • 2000
  • This study aims to examine the characteristics of the water quality variation in relation to the change of water exchange rate with respect to the development phases of the Pusan port. To clarify the characteristics, water exchange caused by the variations of coastline shape and water surface area was examined by the numerical experiments using the Lagrangian particle tracking model based on 2-D shallow water equation. As the results of numerical experiments, it was proved that the water exchange in the Pusan port was decreased mainly due to the port development and the breakwaters construction. During the port development phases from 1875 to 1998, 35% of the sea-space in the port had decreased to make hinterland spaces. This resulted in the loss of wet-land and coastline change as well as decrease of the water exchange rate at the sea side. The city population in that period had rapidly increased from several thousands to 4 millions, resulting in the large discharge of sewages into the port area. Under the these environmental conditions, it can be clearly said that the water quality in the Pusan port is sensitively affected by the discharge of urban sewages decrease of the water exchange rate in relation to port and urban developments. In the study, the temporal changes of water quality were discussed with respect to the port development phases. It was clear that the water quality wad controlled by the exchange rate change under the port development as well as the input impact into the port from the urbanized city area. To make clean sea of the Pusan port, it is suggested that the sewage control, the water exchange and coastline control should be systematically checked under the concept of eco-friendly development and environmental management.

  • PDF

Water Quality Simulation of Juam Reservoir Depend on Total Pollution Loads Control (총량규제에 따른 주암호의 장래 수질 예측)

  • Jang, Sung-Ryong;An, Ki-Sun;Kwon, Young-Ho;Han, Jae-Ik
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • When the Juam multipurpose dam which is connected with existing large water supply facilities is finished, water environment is changed from stream to lake. The changed quality of water should be examined. In this study, the result of water quality forecasting is analysed and an effective management plan of water quality is presented. Tn this study, the WASPS model that is a dynamic water quality simulation model was selected to forecast the water quality. This model forecasts movement of change of pollutants. For an application of the model, the subject areas were divided into seventeen sub-areas by considering change temperature depending measuring points and on depth of water. Meteorological data collected by the meteorological observatory and data about quality measured by the Korea Water Resources Development Corporation were used for an operation of the model. As a result of quality examination through quality data and estimated pollutant loading, the water quality environment criterion was grade II and the nutritive condition was measured as meso-graphic grade. In this study, an effective management was planned to improve water quality by reducing pollution load. According to the result of examination, when more than 30% of BOD was reduced it was recorded that the environment standard of water quality was improved to the second grade.

A Numerical Simulation of Marine Water Quality in Ulsan Bay using an Ecosystem Model (생태계모델을 이용한 울산만의 수질 시뮬레이션)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 1998
  • The distributions of chemical oxygen demand (COD) and suspended solid (SS) in Ulsan Bay were simulated and reproduced by a numerical ecosystem model for the practical application to the management of marine water quality and the prediction of water quality change due to coastal developments or the constructions of breakwater and marine facilities. Comparing the computed with the observed data of COD and SS in Ulsan bay the results of simulation were found to be good enough to satisfy the practical applications.

  • PDF

Domestic Aggregate Quality Status and Mechanical Properties of Concrete According to Quality of Aggregate (국내 골재 품질 현황 및 골재등급에 따른 콘크리트의 역학적 특성에 관한 연구)

  • Min, Choong-Siek;Park, Jong-Ho;Jeong, Yong;Lee, Jae-Hyun;Kim, Yong-Ro;Kim, Hyo-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.207-208
    • /
    • 2012
  • This study is aimed to utilize for basic material of concrete quality management through evaluate properties of fresh and hardened concrete with the aggregate quality. As a result, fine aggregate's slump change of between one grade was 8~82% and in case of coarse aggregate, slump change of between one grade was 2~22% on same mixing condition. The unit water for same workability condition, unit water was increased 16kg/㎥ with decreasing of one grade for fine aggregate and unit water was increased 5kg/㎥ with decreasing of one grade for coarse aggregate.

  • PDF

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

A Geographical Study on Water Environmental Changes in the Urban Rivers in Tokyo, Japan

  • Taniguchi, Tomomasa
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.54-57
    • /
    • 2005
  • It is important to assess the change of water environment in the present and past. In this study, present-day water quality standards are applied to the expressions in literary works to reconstruct the historical water environment including the quality. As the result, the historical reconstruction of water quality has been made distribution of water quality from 1905 to 1935 for the Sumida River in Tokyo.

Analysis of the Water Quality Change Due to Water Level Control of Sayeon Dam (사연댐 수위조절시 수질변화 분석)

  • Lee, Sang Hyeon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1069-1078
    • /
    • 2013
  • The Bangudae Petroglyphs, national treasure No. 285 is located within submerged upper districts of Sayeon dam supplying the main residential water in Ulsan. Of the many ways for the reservation of Petroglyphs located the altitude at 53~57 m, the plan that we take it out of the water lowering the water level from 60 m to 52 m has been examined mainly in case of controlling artificially the water level of the dam. In this paper, we examined expected problems from the loss of dam function and the change of water quality from water deterioration caused by the water level control of the Sayeon dam. Using the model of Vollenweider and CSTR (Continuous Stirred Tank Reactor), we analyzed the density change of BOD and COD, representative water quality index and the TP and TN, the main reason of algae growth. The result showed that the density of COD lowered a little but the density of TP and TN went up over 130% when controlling the water level from 60 m to 52 m. These changes cause a serious algae problem and if doing the water quality management as the density of TN and TP, the water quality would become worse. Water storage and supply residential water decreases, and the water quality becomes worse because of eutrophic state.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

Assessment of Future River Environment considering Climate Change and Basin Runoff Characteristics (기후변화와 유역유출특성을 고려한 미래하천환경 평가)

  • Ahn, Jung Min;Im, Toe Hyo;Lee, In Jung;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.269-283
    • /
    • 2014
  • This study evaluated the environmental impact based on watershed characteristics and climate change using RCP climate change scenarios provided by the Korea Meteorological Administration. Future dam inflow was estimated by the SWAT model. Dam safety evaluation and downstream duration curve analysis was performed using HEC-ResSim model. Trends of water quality was analyzed through seasonal-Kendall Test using existing water quality observation data. Release discharge and tributary runoff derived SWAT and HEC-ResSim models applied to Qual2E and the future change in water quality trends were analyzed. Integrated environmental review watershed following techniques will be able to obtain the river environment management system and environmental issues such as climate change, new guidelines for preemptively response will be provided.