Browse > Article
http://dx.doi.org/10.3741/JKWRA.2009.42.10.877

Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed  

Park, Jong-Yoon (Dept. of Civil and Environmental System Engineering, Konkuk University)
Park, Min-Ji (Dept. of Civil and Environmental System Engineering, Konkuk University)
Ahn, So-Ra (Dept. of Civil and Environmental System Engineering, Konkuk University)
Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
Publication Information
Journal of Korea Water Resources Association / v.42, no.10, 2009 , pp. 877-889 More about this Journal
Abstract
This study is to assess the future potential impact of climate change on stream water quality for a 6,581.1 km$^2$ dam watershed using SWAT (Soil and Water Assessment Tool) model. The ECHAM5-OM climate data of IPCC (The Intergovernmental Panel on Climate Change) A2, A1B, and B1 emission scenarios were adopted and the future data (2007-2099) were corrected using 30 years (1977-2006, baseline period) weather data and downscaled by Change Factor (CF) method. After model calibration and validation using 6 years (1998-2003) observed daily streamflow and monthly water quality (SS, T-N, and T-P) data, the future (2020s, 2050s and 2080s) hydrological behavior and stream water quality were projected.
Keywords
Climate change; Downscaling; ECHAM5-OM; Nonpoint source; SWAT; Watershed modeling;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 안소라, 이용준, 박근애, 김성준 (2008). "미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224.
2 안재현, 유철상, 윤용남 (2001). "GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석." 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345.   과학기술학회마을
3 정일원, 배덕효, 임은순 (2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅱ): 유역별 기후시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 205-214.   과학기술학회마을   DOI   ScienceOn
4 한국수자원공사 (2003). 다목적댐 운영실무편람.
5 Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89.   DOI   ScienceOn
6 Brown, L.C., and Barnell, T.O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual. EPA document EPA/600/3-87/007, USEPA, Athens, GA.
7 Diaz-Nieto, J., and Wilby, R.L. (2005). A comparison of statistical downscaling and climate change factor methods impacts on low flows in the River Thames. Climatic Change, Vol. 69, pp. 245-268.   DOI
8 IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
9 Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036.   DOI   ScienceOn
10 Soil Survey Staff (1996). National Soil Survey Handbook. title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, D.C.
11 Viner, D., and Mayer, L., (1994). Climate Change Scenarios of Impact Studies in the UK. Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia.
12 Wilby, R.L., and Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames. Water Resources Research, Vol. 42, pp. 1-10.   DOI   ScienceOn
13 Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Roky Mountains. Agriculture Handbook 282, USDA-ARS.
14 Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook 282, USDA-ARS.
15 Zhang, X., Srinivassan, R., and Hao, F. (2007). "Predicting Hydrologic response to climate change in the Luohe river basin using the SWAT model." American Society of Agricultural and Biological Engineers, ASABE, Vol. 50, No. 3, pp. 901-910.
16 배덕효, 정일원, 권원태 (2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅰ): 유역별 기후시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 191-204.   과학기술학회마을   DOI   ScienceOn
17 Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and Water Assessment Tool User's Manual Version 2000. Texas Water Resources Institute, College Station, Texas.
18 박종윤, 이미선, 이용준, 김성준 (2008). "SWAT 모형을 이용한 미래 토지이용변화가 수문-수질에 미치는 영향 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 187-197.
19 박근애 (2008). 미래 기후변화가 농업수자원에 미치는 영향 연구. 박사학위논문, 건국대학교, pp. 68-89.
20 유철상, 이동률 (2000). "기후변화와 수자원: 국내의 연구동향." 한국수자원학회논문집, 한국수자원학회, 제33권, 제3호, pp. 42-47.   과학기술학회마을
21 Alcamo, J., Doll, P., Kaspar, F., and Siebert, S. (1997). Global change and global scenarios of water use and availability: An application of WaterGAP1.0. Report A9701, Center for Environmental Systems Research, University of Kassel, Germany.
22 Carter, T.R., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment.
23 Nash, J.E., and Sutcliffe, J.E. (1970). River flow forecasting through conceptual models, Part I-A discussion of principles. Journal of Hydrology, Vol. 10, No. 3, pp. 282-290.   DOI   ScienceOn
24 Williams, J.R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In present and prospective technology for predicting sediment yield and sources, ARS-S-40, USDA-ARS.
25 김철겸, 이정은, 김남원 (2007). "충주댐 상류유역의 유사 발생에 대한 시공간적인 특성." 대한토목학회논문집, 대한토목학회, 제40권, 제11호, pp. 887-898.
26 박종윤 (2009). SWAT 모형을 이용한 미래 기후변화가 수문학적 거동 및 하천수질에 미치는 영향 평가. 석사학위논문, 건국대학교, pp. 1-4.
27 배덕효, 정일원 (2005). "기후변화에 따른 수자원 영향 평가." 방재정보, 한국방재협회, 제21호, pp. 16-22.
28 안소라, 박민지, 박근애, 김성준 (2009). "기후변화가 경안천 유역의 수문요소에 미치는 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50.   과학기술학회마을   DOI   ScienceOn