• Title/Summary/Keyword: water purification system

Search Result 306, Processing Time 0.037 seconds

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.

Development of Drug Input Analysis and Prediction Model Using AI-based Composite Sensors Pre-Verification System (AI 기반 복합센서 사전검증시스템을 활용한 약품투입량 분석 및 예측모델 개발)

  • Seong, Min-Seok;Kim, Kuk-Il;An, Sang-Byung;Hong, Sung-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.559-561
    • /
    • 2022
  • In order to secure the stability of tap water production and supply, we have built a system that can be pre-verified before applying AI-based composite sensors to the water purification plant, which is a demonstration site. We have collected and analyzed data related to the drug input of the GO-RYEONG water purification plant for about two years from December 2019 to December 2021. The outliers of each tag were removed through data preprocessing such as outliers and derived variable, and the cycle was set as average data for 60 minutes of each one-minute period, and the model was learned using the PLS model.

  • PDF

Effect of Climate Change Characteristics on Operation of Water Purification Plant (정수장 운영에 영향을 미치는 기후변화 요인 분석)

  • Youjung Jang;Hyeonwoo Choi;Seojun Lee;Jaeyoung Choi;Hyeonsoo Choi;Heekyong Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.89-100
    • /
    • 2024
  • Climate change has a broad impact on the entire water environment, and this impact is growing. Climate adaptation in water supply systems often involves quantity and quality control, but there has been a lack of research examining the impacts of climatic factors on water supply productivity and operation conditions. Therefore, the present study focused on, first, building a database of climatic factors and water purification operating conditions, and then identifying the correlations between factors to reveal their impacts. News big data was analyzed with keywords of climatic factors and water supply systems in either nationwide or region-wide analyses. Metropolitan area exhibited more issues with cold waves whereas there were more issues with drought in the Southern Chungcheong area. A survey was conducted to seek experts' opinions on the climatic impacts leading to these effects. Pre-chlorination due to drought, high-turbidity of intake water due to rainfall, an increase of toxins in intake water due to heat waves, and low water temperature due to cold waves were expected. Pearson correlation analysis was conducted based on meteorological data and the operating data of a water purification plant. Heavy rain resulted in 13 days of high turbidity, and the subsequent low turbidity conditions required 3 days of high coagulant dosage. This insight is expected to help inform the design of operation manuals for waterworks in response to climate change.

The Corrosion Effect of the Water Pipelines in Buildings according to Drinking Water Quality (수돗물 수질에 따른 옥내급수관 부식에 미치는 영향분석)

  • Yu, Soon-Ju;Park, Su-Jeong;Ahn, Kyung-Hee;Kim, Hyun-Gu;Kim, Chang-Soo;Jung, Il-Rock;Park, Young-Bok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.701-708
    • /
    • 2008
  • As a countermeasure for reduction of corrosion in the delivery and distribution pipes used for tap water, materials for the pipelines in-houses and the effect of water quality on corrosivity of water pipelines were investigated in the distribution system of Han river. As the corrosion index at 6 water purification facilities of Han river, average Langelier Saturation Index (LI) of raw and finished water were -1.0 and -1.4 respectively and average Larson Index (LR) were 9.5 and 9.9, respectively. And also corrosion potential showed corrosivity in finished water (-431~-462 mV) as well as raw water (-426~-447 mV). This results indicate that tap water quality of han river have corrosivity. To understand the corrosivity effect in pipe material used for premise distribution system, water quality of stagnant tap water and tap water were analyzed and the differences between them were calculated. The difference concentration of iron, copper and zinc were $12.9{\mu}g/L$, $31.0{\mu}g/L$ and $45.0{\mu}g/L$ respectively in galvanized steel pipe for use more than 15 years and showed highest concentration. As a result, the control to corrosivity in the water pipelines, corrosivity control treatment in the water purification system can be applied. In advance it is necessary to monitor corrosivity of water quality using corrosive index because corrosivity may differ from the seasonal and regional characteristics and water chemicals dosage. For the future the guideline for corrosion index have to be established.

Characteristics of the Non-electric Water Purification System Using Onggi Filter (옹기 필터를 이용한 무 전원 정수 장치에 관한 연구)

  • Wi, In-Hee;Shin, Dong-Wook;Han, Kyu-Sung;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.332-336
    • /
    • 2014
  • A non-electric water purification system using the Korean traditional ceramic ware Onggi, was demonstrated as an appropriate technology to solve water shortages in under developed regions. Generally, Onggi is produced using large size raw materials that are sintered at low temperature, resulting in a porous body that shows air and water permeability. An Onggi filter was prepared using a spinning wheel with the addition of rice bran to the body to increase porosity. The porosity of the obtained Onggi filter was 25.1%; the water permeability was 85.1 $L/m^2h$. Turbidity and TDS of the purified water using Onggi filter were decreased by 97.7% and 29.1%, respectively.

Development and Performance Evaluation of Positively Charged Porous Filter media for Water Purification System (정수 설비를 위한 양전하가 부가된 다공성 수처리 필터 개발과 성능평가)

  • Lee, Chang-Gun;Joo, Ho-Young;Lee, Jae-Keun;Ahn, Young-Chull;Park, Seong-En
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.95-98
    • /
    • 2006
  • Filtration by fibrous filter is one of the Principle methods used for removing pollutant particles in the liquid. Because of the increasing need to protect both human health and valuable devices from exposure to fine particles, filtration has become more important. Filters have been developed with modified surface charge characteristics to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in water. The main purposes of this study are to develop and evaluate the performance evaluation of the apparatus for making a positively charged porous filter media and to analyze the surface characteristics of the filter media for capturing negavitely charged contaminants mainly bacteria and virus from water. The experimental apparatus consists of a mixing tank, a vacuum pumping system, a injection nozzle, a roller press and a controller. The filter media is composed of glass fiber(50-750 nm), cellulose($10-20{\mu}m$) and colloidal charge modifier. The characteristics of filter media is analyzed by SEM(Scanning Electron Microscopy), AFM(Atomic Force Microscopy) and quantified by measuring the zeta potential values.

  • PDF

A Study on the Design and Embodiment of Educational Automatic Purification Facility of Waste Water (교육용 자동 폐수 정화시설의 설계와 구현에 관한 연구)

  • Kim, Moon-Ki
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • In this research, an educational automatic purification facility of waste water is designed. The system has four functions which are filter tank, aeration tank, reactor tank and ultraviolet sterilization tank, and is embodied by PLC(Programmable Logic Controller), DC motor, solenoid valve, squirt gun, propeller, profile, switch, sensor and so on. Also, the system is designed and manufactured based on knowledges which are obtained from college education. The study is emphasized on "learning by doing". From this case study, students can increase their originality and adaptability for related industry. Also, the technique can be initiated industry if needed.

  • PDF

Adaptive method for the purification of zinc and arsenic ions contaminated groundwater using in-situ permeable reactive barrier mixture

  • Njaramba, Lewis Kamande;Nzioka, Antony Mutua;Kim, Young-Ju
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.283-288
    • /
    • 2020
  • This study investigated the purification process of groundwater contaminated with zinc and arsenic using a permeable reactive barrier with a zero-valent iron/pumice mixture. We determined the removal rates of the contaminants for 30 days. In this study, column reactor filled with the zero-valent iron/pumice reactive mixture was used. Experimental results showed that the mixture exhibited an almost complete removal of the zinc and arsenic ions. Arsenic was removed via co-precipitation and adsorption processes while zinc ions were asorbed in active sites.The purification process of water from the metal ionscontinued for 30 days with constant hydraulic conductivity because of the enhanced porosity of the pumice and interparticle distance between the zero-valent iron and pumice. Contaminants removal rates and the remediation mechanism for each reactive system are described in this paper.

Investigation on the Enhancement of Water Purification Functions in Forest Watershed (수변구역 산림에 의한 수질정화기능 증진에 관한 고찰)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.72-81
    • /
    • 2001
  • This study is aimed to review the previous research accomplishments with analysis of problems and to suggest the counter plan for the watershed management and the ongoing research strategy. Phytoremediation provides a cost-effective techniques having a merit of low investment and maintenance cost. It could be one of the best techniques, which is an alternative plan to overcome economical situation and lack of experts in our country. In forest watershed affected by waste water and heavy metal pollutants should be controlled by vegetative remediation system, but the disposal techniques of harvested plant materials should be developed. Also, high degree areas of natural vegetation as a key model to recover the vegetation should be well conserved. It is important to restore forest continuity between upper stream and lower stream basin with the restoration of damaged in forest watershed. It is established to integrated protection system for land use and management plan and to natural environment evaluation methods affected by projects such as erosion control and developments in stream and forest. In addition, I suggest the continuous environmental monitoring system to treat the pollutions concerned.

  • PDF

The Purification Characteristics of Reactive Soil-Bentonite Landfill Liner (혼합반응 차수재의 오염정화특성)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.398-403
    • /
    • 2003
  • The purpose of this paper is to investigate purification characteristic of soil-bentonite landfill liner and to develop a desirable liner system. In order to clarify the purification characteristics, high pressure column tests using soil-bentonite, reactive soil-bentonite and reactive bentomat were carried out in the presence of water and leachate. The test results indicated that the significant amount of NH$_3$-N, Pb and Cu was removed through the reactive soil-bentonite liner system.

  • PDF