• 제목/요약/키워드: water pipe

검색결과 1,709건 처리시간 0.027초

해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토 (Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC)

  • 정훈;허균영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

수격 현상에 의한 파이프의 과도진동응답 해석 (Analysis of a transient vibration response caused by Water Hammer in a pipe-line system)

  • 조성문;서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.119-124
    • /
    • 2004
  • A water hammer mostly comes out when a valve fixed at the downstream end of the pipe-line system is rapidly closed or opened. A simple phenomenon of water hammer is often caused around us, and this phenomenon imperils the pipe systems occasionally. In this paper, we confirmed the phenomenon of water hammer by an experiment and forecasted a change of pressure in the pipe-line system by a numerical method. Also a vibration response, which is caused by water hammer, of the pipe-line system confirmed by an experiment and analyzed by a numerical method.

  • PDF

전산유체역학(CFD)를 활용한 정수공정에서 유공관 설계 (Design of the Perforated Pipe in Water Treatment Process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 대한환경공학회지
    • /
    • 제32권9호
    • /
    • pp.887-893
    • /
    • 2010
  • 정수공정에서 활용되고 있는 유공관의 일반적인 기능은 균등한 압력으로 일정한 유량을 유출시키는 것이다. 정수공정에서 유공관이 여러 공정에서 활용되고 있음에도 불구하고 유공관 설계에 대한 일반적인 설계인자가 없는 실정이며 따라서 본 연구에서는 전산유체역학적(Computational Fluid Dynamics) 기법을 활용하여 정수공정에 활용되고 있는 유공관 설계인자를 도출하고자 하였다. 유공관 유출량의 균등성은 유공관 표면적 대비 전체 유공단면적 합의 비가 작아질수록 향상되는 경향을 보인다. 즉 유공 면적비가 작아질수록 유출 균등성은 그에 비례하여 향상되며 또한 동일한 면적비에서 유공의 개수가 증가할수록 유출량 균등성은 향상된다. 특히 유공관의 직경에 해당하는 길이 당 2개의 유공(2/D)을 배치하는 경우가 균등성의 향상 폭이 가장 크며 또한 압력 강하 값이 가장 적어 수리학적으로 가장 유리한 유공 개수이다. 유공관 유입 유속이 작고(약 0.06 m/s), 유공관 길이가 길어질수록 유출량은 전단에서 후단으로 갈수록 감소하며 반대로 유공관 유입 유속이 크고 (3 m/s) 유공관이 길어지면 유출량은 후단으로 갈수록 증가하는 경향을 보인다.

급배수관망 누수예측을 위한 확률신경망 (Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network)

  • 하성룡;류연희;박상영
    • 상하수도학회지
    • /
    • 제20권6호
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.

지중 매설관 주변의 지하수흐름에 대한 이론적 고찰 (A Theoretical Study on the Ground Water Flow Adjacent to Buried Pipe)

  • 이승현;한진태
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1439-1443
    • /
    • 2011
  • 본 연구에서는 지중 매설관 주변의 지하수 흐름을 이론적으로 규명해 보았다. 지하수 흐름에 있어서는 비압축, 비회전 흐름을 고려하였다. 지하수 흐름 해석시 복소 포텐셜을 이용하여 흐름을 정의하였는데 지중 매설관이 없는 경우의 균등흐름을 먼저 고려하였고 원 정리에 의해 지중 매설관의 영향을 기존의 균등흐름에 추가하였다. 복소 포텐셜의 선형성에 근거하여 두 개의 흐름을 중첩시킬 수 있으나 이때 특이점의 위치를 고려하여 적절한 복소 포텐셜을 적용함으로써 추가적인 특이점의 이미지를 삽입하지 않도록 하는 효율적인 해석이 필요하다. 최종적으로는 순환을 동반하는 지중 매설관 주변의 흐름을 복소 포텐셜 중첩을 통해 살펴보았고 그 경우 흐름에 의해 지중 매설관에 작용하는 작용력을 유도해 보았다.

배수관 내시경 조사를 통한 간접적인 관 노후도 평가방법의 적정성 연구 (A Study on Adequacy of Pipe Deterioration Evaluation Methods using the Endoscope of Water Distribution Pipe)

  • 최태호;강신재;최재호;구자용
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.669-683
    • /
    • 2012
  • The water supply pipes are buried across wide range of areas, so it is hard to spot them using excavation and takes a large amount of expense. Thus, there is a high risk for direct research and application, accompanying many difficulties in implementation of them. Therefore, it is more economical and convenient to use indirect evaluation variables than direct evaluation of the buried pipes in assessing the degree of pipe deterioration. To assess the degree of pipe deterioration using the indirect evaluation variables, it should be done first to identify how and to what extent they affect the degree of deterioration. This study measured the evaluation variables for pipe deterioration using the pipe endoscope and analyzed the measurement results and the degree of impact on the pipes. In addition, this study attempted to evaluate the adequateness of the pipe deterioration evaluation using the indirect variables based on the analysis results. The evaluation variables measured through the pipe endoscope were the thickness of sediments, size of scale, degree of desquamation and condition of connections. For the indirect evaluation variables, the data such as the property data from GIS pipe network map as well as the material, diameter, age and pipe lining material of the pipe, road type, leakage frequency, average water velocity and water pressure using the leakage repair records was collected. Using the collected data, this study comparatively analyzed the indirect evaluation variables for the degree of pipe deterioration and the results from the pipe endoscope to choose appropriate variables for pipe deterioration evaluation and calculated the weights of the indirect variables on the degree of deterioration. The results showed that the order of the impact of indirect variables on deterioration was pipe age > pipe lining material > road type > leakage frequency > average water velocity with their weights of 0.45, 0.20, 0.15, 0.10, and 0.10, respectively. Conclusively, the results suggest that the measures of sediment thickness, scale size, degree of desquamation and condition of connections are appropriate for the evaluation of pipe deterioration and sufficient for the analysis of the impact of the indirect variables on deterioration.

Air-Water Countercurrent Flow Limitation in a Horizontal Pipe Connected to an Inclined Riser

  • Kang, Seong-Kwon;Chu, In-Cheol;No, Hee-Cheon;Chun, Moon-Hyun;Sung, Chang-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.548-560
    • /
    • 1999
  • An experimental investigation has been peformed to examine the effects of various geometrical parameters and an initial operating condition on the air-water countercurrent How limitation (CCFL) in a simulated PWR hot leg. A total of 118 experimental data for the onset of CCFL and zero liquid penetration were obtained for various combinations of test parameters. It was observe that the CCFL can be classified into three different categories: (the onset of CCFL, (the partial liquid delivery, and (r) the zero liquid penetration. The observed mechanisms of the onset of CCFL were different depending on the inlet water flow rate. The parametric effects of pipe diameter, horizontal pipe length, horizontal pipe length-to-diameter (L/D) ratio, and initial water level in the horizontal pipe of the test section on the onset of air-water CCFL were also examined. An empirical correlation for the onset of CCFL in a horizontal pipe connected to an inclined riser was developed in terms of Wallis flooding parameters for the low inlet water flow rate region. Comparisons of the present empirical correlation with the air-water CCFL data of large pipe diameters show that the present correlation agrees more closely with the experimental data than the existing CCFL correlations.

  • PDF

외벽측 급수관의 동결 과정에 관한 연구 (The Freezing Process of the Water Supply Pipe in an Exterior Wall)

  • 강한기;이재헌
    • 설비공학논문집
    • /
    • 제19권11호
    • /
    • pp.782-788
    • /
    • 2007
  • In this paper, the freezing process of the water supply pipe in the exterior wall of an apartment house was analyzed by numerical method. The thickness of the pipe insulation and the percentage of insulation damage were considered as parameters in this paper. In the cases of the 0%, 8% and 20% damaged of the 5mm thickness insulation, the freezing was completed after 13 hours, 10 hours and 7 hours respectively. And in cases of the 10mm thickness insulation, the freezing was completed after 18 hours, 10.5 hours and 8 hours respectively. As a result, it is predicted that the water freezing would occurred when the water supply pipe with 8% or 20% damaged insulation are installed in the exterior wall. However, the water freezing would not occurred when the water supply pipe with 10mm thickness insulation of 0% damage is installed in the exterior wall.

개별관로 정의 방법을 이용한 상수관로 파손율 모형화 및 경제적 교체시기의 산정 (Modeling of the Failure Rates and Estimation of the Economical Replacement Time of Water Mains Based on an Individual Pipe Identification Method)

  • 박수완;이형석;배철호;김규리
    • 한국수자원학회논문집
    • /
    • 제42권7호
    • /
    • pp.525-535
    • /
    • 2009
  • 본 연구에서는 상수관망에서 개별적으로 노후도가 심하여 개량이 필요한 구간을 보다 정확하게 구분하기 위해 새로운 개별관로 정의 방법이 개발되었다. 적절한 관로 최소구성성분 길이를 결정하기 위하여 여러 가지 관로 최소구성성분 길이에 대한 평균 누적파손횟수경사선의 분산값을 비교하여 가장 큰 분산값을 나타내는 관로 최소구성성분 길이인 4 m 를 연구대상 지역의 상수관망에 적용하였으며 관로 ID는 39개로 구분되어졌다. 관로의 경제적 최적교체 시기는 한계파손율과 관로의 파손경향모형을 이용하여 결정되었는데, 각 관로 ID에 대하여 관로의 선형적 파손경향, 지수적 파손경향 또는 선형과 지수형 사이에 있는 파손경향 모두에 적용될 수 있는 General Pipe Break Prediction Model(Park and Loganathan, 2002)과 수정된 시간척도를 이용한 ROCOF(Park et al., 2007)를 적용하여 연구대상 상수관망의 최적교체시기를 산정 및 분석하였다. ROCOF 모형화 과정에서 대수-선형과 와이블 ROCOF를 적용 후 최대로그우도 추정값을 비교하여 최대로그우도가 큰 값을 가지는 ROCOF를 각 관로 ID의 ROCOF로 사용하였다. 관로파손으로 인한 사회적 비용이 관로의 최적교체시기에 미치는 영향도 분석되었다.

상수도 배급수관망의 부식방지를 위한 인산염계 방청제 적용에 관한 연구 (Effect of Phosphate-based Inhibitors on Pipe Corrosion of Drinking Water Supply)

  • 이윤진;남상호
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.65-71
    • /
    • 2003
  • The injection concentration of corrosion inhibitor increases under the pH 7, temperature of 2$0^{\circ}C$, and alkalinity of 35 mg/l (as CaCO$_3$), the corrosion rate gradually decreased. When the corrosion inhibitor of 10 mg/l is injected, the corrosion rate for carbon steel pipe, galvanized steel pipe, and copper pipe reduces for 37, 66 and 61 % respectively that it is more efficient on galvanized steel pipe and copper pipe. As a result of examination of corrosion rate at pH 6, 7, and 8 when injecting 10 mg/l of corrosion inhibitor under the conditions of 2$0^{\circ}C$ in water temperature and 35 mg/l (as CaCO$_3$) in alkalinity, the efficiency of the corrosion inhibitor increases as the pH increases. For carbon steel pipe, it does not show much a difference with the change of the pH condition, but galvanized steel pipe and copper pipe clearly show the corrosion rate depending on the change of the pH condition. The efficiency of corrosion inhibitor is low as the concentration of residual chlorine is high, but it does not show a great influence at 0.4 mg/l or less. For each pipe type, in the case of carbon steel pipe, the range of increase of corrosion speed following the residual chloride is higher than the other pipe types. In the meantime, the effect following the residual chlorine in copper pipe is low.