암치료용 방사선 (15 MV의 에너지를 갖는 광자선) 속에 있는 흡수선량과 불순전자 또는 산란 광자에 관한 분포를 광자선 면적 크기에 따른 변화와 광자선 면적을 반만 차폐시킨 선속에 대하여 연구 조사하였다. 광자선의 에너지를 15MV로 주어질때 광자선 최대 흡수깊이 $d^{max}$ 값은 광자선의 면적을 증가시키면 시킬수록(5$\times$5 에서 30$\times$30$\textrm{cm}^2$)d$_{max}$ 값은 감소된다. 이는 광자선 즉 방사선을 발생시키는 가속기 기계 속에 있는 여러 부품 (flattening filter, collimator jaws, tray holder,……)과 상호작용하여 형성된 불순전자로 인하여 d$_{max}$ 값이 표피쪽으로 이동되어 buildup 영역에 높은 선량흡수를 갖게 된다. 최대 흡수깊이 값을 계산할 때 이러한 현상을 고려하지 않으면 그릇된 data 값을 갖는다. 대부분의 불순 전자는 광자선 중심에 주로 분포하며 그 진행거리는 30.0mm 이하의 짧은 거리를 갖는다. 이 불순전자가 30.0mm이내(즉 buidup 영역)에 전부 흡수되므로 buidup 영역은 높은 선량흡수를 갖게되어 해를 주게된다. 그러므로 이러한 불순전자를 제거시키므로서 buidup 영역에 낮은 선량 흡수를 갖을 뿐 아니라 d$_{max}$ 값도 역시 깊은 곳까지 이동시켜 치료에 효과적인 방법 이 창출된다.
본 연구에서는 치료용 양성자선 계측을 위한 광섬유 방사선량계 개발을 목적으로 최적화 과정의 기초연구를 통하여 광섬유 방사선량계를 제작하였다. 양성자선 계측의 최적화를 위해 유기섬광체의 종류에 따른 섬광량 및 브래그 피크의 피크/플래투를 측정하여 가장 효율이 뛰어난 섬광체를 선별하였고, 유기섬광체의 직경에 따라 물 팬텀의 각 깊이에서 손실되는 양성자선의 에너지에 대해 유기섬광체에서 발생되는 섬광량을 측정하여 유기섬광체의 직경에 따른 선형성을 도시하고 최적의 섬광체 직경을 선택하였다. 또한 양성자선의 조사각도에 대해 유기섬광체의 길이에 따른 섬광량 및 섬광량의 표준편차를 측정하여 입사각 의존도를 판별하고 최적의 섬광체 길이를 결정하였다. 최적화 과정을 통하여 제작된 센서 성능평가의 일환으로 양성자 가속기의 선량율 및 모니터 유닛에 따른 광섬유 방사선량계의 섬광량을 측정하였다.
1.목적 : 작고 불규칙한 모양의 전자선 조사면에서 선원의 출력에 영향을 미치는 요인은 선형가속기의 collimation system, insert block diameter, energy 등이다. 때문에 이러한 조사면의 선량계산으로 LBR을 이용할 수 있는데 LBR(lateral build-up ratio)이란 동일한 incident fluence와 profile에 대해 circular field와 broad field의 선량비로서 나타낼 수 있다. 얻어진 LBR data는 elementary pencil beam 모형을 근거해 깊이와 에너지에 따른 함수(${\sigma}$)로 표현할 수 있다. 여기에서 얻어진 수식을 기초로 해서 만들어진 factor값이 작고 부정형의 전자선 조사면의 선량계산 유용성을 알아보고자 한다. 2.재료 및 방법: 심부선량은 water phantom에서 ion chamber로 측정하였다. Cerrobend와 electron applicator 에 따른 incident fluence의 변화를 알아보기 위해 Chamber를 0.5mm깊이에 놓고 측정하였다. 그리고 에너지와 electron applicator 크기에 따라 insert block diameter를 2-15cm로 변화시키며 심부선량을 측정하였고 이 값을 0.5mm 깊이에서 normalization 하였다. 이렇게 normalization 한 그래프로부터 LBR과 함수 (${\sigma}$)를 얻어했다. 3.결과 : 0.5mm 깊이에서 normalization한 심부선량-그래프로부터 LBR data와 그로부터 얻어낸 (${\sigma}$)함수 값을 기초로 하여 elementary pencil beam 모형의 깊이에 빠른 선량변화의 수식을 얻어낼 수 있었다. 4.결론 : 부정형 전자선 조사면에 대해 MU당 심부선량은 작은 circular field에서 측정된 LBR값, reference applicator와 insert block diameter 에 따른 incident fluence factor 그리고 reference broad field에서의 심부선량등 세 가지 data로 부터 계산할 수 있다. 이 방법을 이용하면 어떤 모양의 전자선 조사면에 대해서도 심부선량의 계산에 유용하다고 할 수 있다.
목 적: 목적: 2D-ARRAY chamber를 이용하여 고정형쐐기(Physical wedge filter)와 동적쐐기(Dynamic wedge)의 조사야 주변의 선량을 비교하여 평가하였다. 대상 및 방법: 고체팬텀위에 2D-ARRAY seven29 (PTW, Germany) chamber를 이용하여 조사야 10$\times$10, SSD 90 cm로 고정시키고 에너지는 6 MV와 15 MV로 변화시켜 5 mm 깊이의 조사야 밖 선량을 측정하였다. 쐐기필터15$^\circ$, 45$^\circ$동적쐐기와 선형가속기에 장착된 동적쐐기의 15$^\circ$, 45$^\circ$를 측정하여 조사야 끝에서 쐐기의 heel부분과 toe부분의 1 cm 되는 지점에서 5 cm 지점까지의 1 cm 간격으로 주변선량을 비교, 분석하였다. 선량은 최대선량지점에 대한 표면에 근접한 5 mm 깊이와 5 cm 깊이의 백분율로 선량값을 얻었다. 결 과: 6 MV 에너지는 동적쐐기가 고정형쐐기보다 조사야 주변 선량이 0.1$\sim$1.4%정도 모두 낮았다. 15 MV 에너지는 조사야에서 근접한 거리에서 동적쐐기의 선량이 0.4$\sim$0.9%정도 높지만 멀어지면서 급격하게 감소하여 동적쐐기가 최대 1.6% 낮게 측정되었다. 경사각 15$^\circ$와 45$^\circ$에서의 선량차이는 크지 않았으며, 동적쐐기는 heel 부분과 toe부분의 선량차이가 없는 반면 고정형쐐기는 에너지가 크고 쐐기 각도가 클수록 heel부분 보다 toe부분의 선량이 2%정도 높게 측정되었다. 결 론: 동적쐐기와 고정형 쐐기가 조사야 내에서는 같은 선량분포를 갖는 반면 조사야 주변에서는 동적쐐기가 고정형쐐기보다 선량이 낮았다. 따라서 동적쐐기를 사용할 경우 치료주위선량을 감소시킬 수 있으므로 치료부위와 근접한 표면에 가까운 주요장기의 선량을 최소화 할 수 있으며, 치료시간도 단축시킬 수 있었다.
목 적: 방사선치료에 있어 종양조직이나 정상조직의 정확한 선량계산은 치료의 성패를 좌우하는 가장 큰 요인이다. 이로 인해 방사선치료계획은 컴퓨터 단층 영상의 재구성을 통한 불균질 조직에 선흡수계수를 밀도로 변환하여 CT 번호에 의한 선량 보정이 유효하게 이루어지고 있다. 대상 및 방법: 이에 본 연구는 불균질 조직등가 팬톰을 제작하여 현재 사용 중인 방사선 치료 계획시스템을 이용한 CT 번호의 측정과 질량밀도를 계산하여 물을 기준으로 상대값을 구하였다. 또한 실제 방사선 조사 시 측정된 선량(nC)과 CT영상을 이용한 치료계획 시 선량(PDD)을 상대적으로 비교함으로써 실제 CT 번호를 이용한 불균질 조직의 보정에 대한 유용성과 정확성을 평가하고자 한다. 결 과: 측정결과 CT 번호를 이용하여 계산된 조직등가물질의 질량밀도와 실제 질량밀도는 $0.005{\sim}0.069g/cm^3$의 차이를 보였으며, 방사선 치료계획 시 심부선량(PDD)과 방사선 치료 장치로 조사하여 측정된 선량의 상대오차는 $-2.8{\sim}+1.06%$로 3% 이내의 유효범위이내의 결과를 얻었다. 결 론: 본 실험은 CT 영상을 이용한 불균질 조직의 보정에 대한 유용성을 확인할 수 있었고, 방사선 치료 계획 장치의 정도 관리(Quality Assurance; QA)의 기본 틀을 제공할 수 있을 것으로 사료된다.
목 적: 방사선치료를 목적으로 촬영된 CT영상을 이용하여 조직내 불균질 물질 및 체위고정 기구에 대한 보정이 선량계산 결과에 미치는 영향을 알아보고자 한다. 대상 빛 방법: 체내불균질 물질의 다양한 사례를 알아보기 위하여 본원에서 제작한 물팬텀($250{\times}250{\times}250mm^3$) 내부에 (1) 뼈 (2) 금속 (3) 조영제 (4) 고정기구(Head holder/Vac-lok) 등 CT Number를 변화시킬 수 있는 물질을 삽입하여 CT촬영을 시행 하였다. 각기 다른 형태의 불균질 CT영상을 전산화치료계획장치(RTP)에 입력하여 동일한 조건(SAD=100 cm 조사야=$10{\times}10cm^2$, 깊이=10cm, 1문조사)으로 에너지별(4, 6, 10 MV X-선) 처방선량 100 cGy를 얻기 위한 선량계산(MU)을 시행하여 비교, 분석하였다. 결 과: 물로만 구성된 팬텀을 기준값으로, 불균질 보정계수 차이는 뼈조직 상태인 경우는 $2.7{\sim}5.3%$, 금속물질인 경우 $2.7{\sim}3.8%$, 조영제인 경우 $0.9{\sim}2.3%$, Head holder $0.9{\sim}2.3%$, Head holder와 Pillow인 경우 $3.5{\sim}6.9%$, 그리고 Vac-lok인 경우 $0.9{\sim}1.5%$의 차이로 나타났다. 결 론: 체내의 불균질 보정계수 차이는 임상적으로 그 적용 형태가 다양하고, 일관성을 보이지 않으며, 조사문수가 증가함에 따라 그 차이가 1%미만으로 허용 가능할 것이나, 고정 기구등에 의한 불균질 보정은 충분히 고려하여 선량계산의 부정확도를 최소화 시켜야 할 것으로 사료된다.
Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20%$) at the region of junction of fields. In this study, we made Acrylic Electron Wedges to improve dose inhomogeneities(${\pm}5%$) in these junction areas and to apply it to clinical practices. All measurements were made using 6, 9, 12, 16, 20 MeV Electron beams from a linear accelerator for a $10{\times}10\;cm$ field at 100cm of SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm acquires central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance according to the acryl insert, e.g. a 1 mm thick acryl insert reduces the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced to approximately 0.2 MeV. These effects were almost Independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase(less than 3%) in the surface dose and a small increase(less than 1%) in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction at the point of penumbra width($35\;mm{\sim}40\;mm$). We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be used to improve dose uniformity at electron field junctions and it will be effectively applied to clinical practices.
The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.
이중으로 집중된 미세 다엽콜리메이터(Double-focused micro Multileaf Collimator: ${\mu}MLC$)는 보통의 다엽콜리메이터(Multileaf Collimator: MLC)에 비하여 조사면 가장자리 부분의 선량을 급격하게 줄여준다. 이러한 특성 때문에, 미세 다엽 콜리메이터는 정위적 방사선 수술과 치료(Stereotactic Radio-Surgery/RadioTtherapy, SRS/SRT)에 사용되어 왔다. 우리는 Elekta Synergy 선형가속기에 이중으로 집중된 동적 미세 다엽콜리메이터(Double-focused Dynamic micro-Multileaf Collimator: DMLC)를 부착하여 선량학적 특성을 평가하였다. 본 연구에서는, 필름(GafChromic EBT2 film), EDGE 다이오드 검출기, 3차원 물 팬텀을 이용하였다. 깊이선량백분율(Percent Depth Dose, PDD), 엽 투과도(leaf leakage), 반그림자(Penumbra)를 측정하였고, 모든 데이터들은 6MV 광자선으로 측정하였다. 그 결과, DMLC가 1% 이내의 투과도를 갖는것을 확인할 수 있었다. DMLC는 이중으로 집중 되는 구조를 가졌기 때문에 반 그림자가 조사야 크기에 대하여 독립적인 것을 확인하였다. 본 연구에서는 DMLC의 선량학적 특성을 바탕으로, Elekta Synergy에 부착된 DMLC의 적용 가능성을 증명하였다.
물질에 방사선을 조사시키면 구성원자 또는 분자의 일부분이 전리되며 특수한 유기화합물은 장기간 free radical상태로 존재하고 그 밀도는 조사된 방사선량에 비례한다. Free radical상태의 물질에 마이크로파와 같은 전자파를 투과시키면 free radicl된 전자의 고유진동과 일치된 전자파를 흡수하는 전자스핀공명(Electron Spin Resonance)이 일어나며 흡수된 전파의 강도를 측정함으로서 조사된 방사선량을 추측할 수 있다. ESR를 이용한 free radical dosimeter로서 가장 잘 알려진 물질이 아미노산 alanine이므로 이것과 파라핀 $10\%$를 혼합하여 $0.4\times1cm$의 alanine dosimeter를 제작하였다. 측정 방법은 방사선 흡수선량을 직접 측정할 수 있도록 조직등가인 물 팬텀과 방수된 Alanine dosimeter holder를 제작하고 의료용 선형가속기에서 발생되는 $6\~21$ MeV전자선을 조사하면서 최대 흡수 선량과 깊이에 따른 선량분포를 측정하였다. 전자선 조사선량은 1 Gy에 60 Gy까지의 방사선 치료선량 범위를 선택하였으며 측정결과 전자선량 증가에 따라 ESR신호의 진폭이 선형비례적으로 증가하였다. 그러나 전자선량이 4 Gy이하에서는 alanine dosimeter의 선량 균일성 이 $\pm2\~4\%$ (표준편차)의 오차가 있었으며 4 Gy이상에서는 $\pm1\%$ 이하의 오차를 나타냄으로서 환자에 대한 전자선 조사량 범위인 1Gy에서 60Gy까지의 흡수선량을 정확히 측정할 수 있었다. 측정한 결과 전자선 에너지 12 MeV이하에서는 전리상으로 측정 계산된 선량과 일치하였지만 15 MeV이상에서는 표면에서 깊이 2cm까지의 흡수선량이 약$2\~5\%$가 높았다. 이와 같은 현상은 의료용 선형가속기의 전자선 방출구에 장착된 산란판과 조사면을 조정하는 cone에 의하여 발생되는 저 에너지 산란전자선이 alanine dosimeter에 측정된 것으로서 에너지가 증가될수록 오염 정도가 증가되었다. 본 실험을 통하여 지금까지 고에너지 전자선량계측에서 전리상에 의한 전기량 측정과 산란선이 없는 단일 에너지로만 간주하여 계산하였던 전자선 흡수선량 측정방법을 직접 흡수선량 측정이 가능한 Alanine/ESR dosimetry로서 교정하는 것이 바람직하다고 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.