• 제목/요약/키워드: water level forecasting

검색결과 122건 처리시간 0.029초

홍수 위험도 척도 및 예측모형 연구 (Study on Measurement of Flood Risk and Forecasting Model)

  • 권세혁;오현승
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

기계학습모델을 이용한 저수지 수위 예측 (Reservoir Water Level Forecasting Using Machine Learning Models)

  • 서영민;최은혁;여운기
    • 한국농공학회논문집
    • /
    • 제59권3호
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

하천 수위예보를 위한 신경망-유전자알고리즘 결합모형의 실무적 적용성 검토 (Forecasting water level of river using Neuro-Genetic algorithm)

  • 이구용;이상은;배정은;박희경
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.547-554
    • /
    • 2012
  • As a national river remediation project has been completed, this study has a special interest on the capabilities to predict water levels at various points of the Geum River. To be endowed with intelligent forecasting capabilities, the author formulate the neuro-genetic algorithm associated with the short-term water level prediction model. The results show that neuro-genetic algorithm has considerable potentials to be practically used for water level forecasting, revealing that (1) model optimization can be obtained easily and systematically, and (2) validity in predicting one- or two-day ahead water levels can be fully proved at various points.

Water level forecasting for extended lead times using preprocessed data with variational mode decomposition: A case study in Bangladesh

  • Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.179-179
    • /
    • 2023
  • This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.

  • PDF

한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형 (The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters)

  • 윤강훈;신현민
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.55-69
    • /
    • 1994
  • 홍수시 한강 인도교에 대한 단기간 예보의 정확도를 제고하기 위한 통계학적 홍수예보모형으로 '인도교수위와 영향인자간의 다중회귀분석에 의한 다변수 모형(MM 모형)'과 '수위구간별 다중회귀분석에 의한 다수준 다변수 모형(MMP 모형)' 그리고 '수위의 증감추세에 따른 2 수준 다변수 모형(2MP 모형)'을 제시하였다. 연구대상으로는 분석된 세가지 모형 중, 'MM 모형'은 4시간예측시 평균오차가 35cm 이내의 정도를 나타내며 'MMP 모형'은 모형개발시에 구분한 각 수위구간에 대해서는 매우 작은 평균오차를 나타내지만 실제 홍수사상에 적용시에는 뚜렷한 정도의 향상을 나타내지 못하는 것으로 보인다. 이것은 실제홍수시 수위가 각 구간내에만 머물지 않기 때문인 것으로 보인다. 한편 '2MP 모형'은 예측정도가 가장 높으나 드물게 발산현상이 나타나고 있어 안정도가 떨어지며, 'MMP 모형'은 '2MP 모형'과 비교하여 예측정도는 약간 떨어지나 안정된 예측결과를 보여준다.

  • PDF

사회인구통계 및 상수도시설 특성을 고려한 소블록 단위 물 수요예측 연구 (Water demand forecasting at the DMA level considering sociodemographic and waterworks characteristics)

  • 진샘물;최두용;김경필;구자용
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.363-373
    • /
    • 2023
  • Numerous studies have established a correlation between sociodemographic characteristics and water usage, identifying population as a primary independent variable in mid- to long-term demand forecasting. Recent dramatic sociodemographic changes, including urban concentration-rural depopulation, low birth rates-aging population, and the rise in single-person households, are expected to impact water demand and supply patterns. This underscores the necessity for operational and managerial changes in existing water supply systems. While sociodemographic characteristics are regularly surveyed, the conducted surveys use aggregate units that do not align with the actual system. Consequently, many water demand forecasts have been conducted at the administrative district level without adequately considering the water supply system. This study presents an upward water demand forecasting model that accurately reflects real water facilities and consumers. The model comprises three key steps. Firstly, Statistics Korea's SGIS (Statistical Geological Information System) data was reorganized at the DMA level. Secondly, DMAs were classified using the SOM (Self-Organizing Map) algorithm to consider differences in water facilities and consumer characteristics. Lastly, water demand forecasting employed the PCR (Principal Component Regression) method to address multicollinearity and overfitting issues. The performance evaluation of this model was conducted for DMAs classified as rural areas due to the insufficient number of DMAs. The estimation results indicate that the correlation coefficients exceeded 0.9, and the MAPE remained within approximately 10% for the test dataset. This method is expected to be useful for reorganization plans, such as the expansion and contraction of existing facilities.

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정 (Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations)

  • 최승용;김병현;한건연
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.523-536
    • /
    • 2011
  • 본 연구의 목적은 중소하천에서의 홍수예측을 위해 사용되는 기존의 수문학적 모형이 가지고 있는 문제점을 개선한 홍수예측 모형을 개발하는데 있다. 이를 위해 기존의 수문학적 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측할 수 있는 Takagi-Sugeno 퍼지 추론기법과 신경망을 연계한뉴로-퍼지홍수예측 모형을 구축하고자 하였다. 뉴로-퍼지 홍수예측 모형의 예측정확도는 입력자료로 사용되는 강우와 수위 자료의 시간적 분포 및 자료의 수에 의해 결정된다. 따라서 본 연구에서는 홍수예측 모형 구축을 위한 최적 입력 자료 조합 선정을 위해 다양한 강우와 수위의 입력자료 조합을 구성하여 적용하였고, 이를 통해 홍수 예측을 위한 뉴러-퍼지 홍수예측 모형의 최적 입력 자료 조합을 선정하였다.

영산호 운영을 위한 홍수예보모형의 개발(III) -배수갑문 조절에 의한 홍수파의 전달- (River Flow Forecasting Model for the Youngsan Estuary Reservoir Operation(III) - Pronagation of Flood Wave by Sluice Gate Operations -)

  • 박창언;박승우
    • 한국농공학회지
    • /
    • 제37권2호
    • /
    • pp.13.2-20
    • /
    • 1995
  • An water balance model was formulated to simulate the change in water levels at the estuary reservoir from sluice gate releases and the inflow hydrographs, and an one-di- mensional flood routing model was formulated to simulate temporal and spatial varia- tions of flood hydrographs along the estuarine river. Flow rates through sluice gates were calibrated with data from the estuary dam, and the results were used for a water balance model, which did a good job in predicting the water level fluctuations. The flood routing model which used the results from two hydrologic models and the water balance model simulated hydrographs that were in close agreement with the observed data. The flood forecasting model was found to be applicable to real-time forecasting of water level fluc- tuations with reasonable accuracies.

  • PDF

Ubiquitous 환경의 U-City 홍수예측시스템 개발 (A Development of Real-time Flood Forecasting System for U-City)

  • 김형우
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF