• Title/Summary/Keyword: water level control

Search Result 1,954, Processing Time 0.027 seconds

Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season (수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가)

  • Jung, Hyoung-mo;Lee, Sang-Hyun;Kim, Kyounghwan;Kwak, Yeong-cheol;Choi, Eunhyuk;Yoon, Sungeun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan;Yoon, Gwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

Variation of Cardiac Output and Blood Pleasure after Flooding Water into Lungs (폐 침수시의 심장 박출량과 혈압의 변동)

  • Cho, Sung-Doo;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.57-66
    • /
    • 1967
  • Cold $(0^{\circ}C)$ or warm $(25^{\circ}C)$ fresh and sea water were flooded into the lungs of rabbits through tracheal canule. Respiratory arrest ensued in 19.5 minutes in the warm fresh water flooded rabbits and was the longest survival time among the experimental groups. The survival times in the other groups were: 2.32 minutes in cold fresh water group, 2.75 minutes in .warm sea water group, and 4.57 minutes in cold sea water group. Cardiac output was measured by means of T-1824 dilution technique after 2 or 3 minutes of flooding in 27 rabbits. Blood pressure was observed by mercury manometer throughout the survival time in 40 rabbits. The following results were obtained. 1. Cardiac output in the warm fresh water flooded and sea water flooded animal was smaller than that of control rabbits. In the cold fresh water flooded animal cardiac output was greater than that of the control animal. 2. Time constants of T-1824 dilution curve of experimental group were elongated than the normal curve. 3. Central blood volume showed an increase in the fresh water group, a decrease in cold sea water group and no change in warm sea water group. 4. In all of the experimental groups arterial blood Pressure showed an abrupt and great variations after flooding of lungs and lasted about 30 seconds. Thereafter, arterial pressure remained at a plateau level until the sudden fall to zero and this was almost coincided with the time of respiratory arrest. The Plateau level of arterial Pressure in fresh water group was about 10 mmHg higher than the control value, and it was lower than the control value in warm sea water group. In cold sea water group the plateau was made up by fluctuations around the control value. 5. Osmosis of water through the lung alveolar membrane occured in all animals. Fresh water caused hemodilution and sea water caused hemoconcentration. 6. In sea water flooded animal more volume of water was recovered through the tracheal canule than the volume injected into trachea. This was interpreted as the consequence of the shift of water from plasma to alveolar sac. 7. Relative freight of lung was greater in fresh water group than sea water group. In all animal lung edema ensued. 8. The mechanisms of cardiac output variations were discussed.

  • PDF

Durable Press Performance and Water Repellency of Cotton/Polyester Fabrics Finished by BMDHEU/Fluorochemicals (DMDHEU/FC 일욕가공된 면/폴리에스테르 혼방직물의 DP성 및 발수성)

  • 권영아
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.24-31
    • /
    • 1998
  • The effects of DMDHEU alone and DMDHEU/Fluorochemical(FC) combined treatment on the physical properties of 75%/25% cotton/polyester(CP) blended fabrics were investigated. FC water repellent and DMDHEU durable press finishes were applied in combination to CP fabrics to provide good water repellency as well as great durable press(DP) performance. The physical properties of the fabrics were evaluated by wrinkle recovery angle(WRA), DP performance, contact angle, demand wettability, and water repellency. The durable press/water repellent finished(DP/WR) CP fabrics show considerably improved WRA and DP performance. The DP/WR finishes do not change the water contact angie of polyester fibers significantly, while the DP finishes increase it. Both DP and DP/WR finishes increase the contact angle of cotton fibers. The water uptake amount increases in the following order : DP/WR cotton, DP/WR CP<DP cotton, DP CP < Control CP, Control cotton. The water uptake amount increases in the following order DP/WR CP, DP/WR cotton <DP cotton <DP CP<Control CP, Control cotton. Considerable improvements for water repellency are imparted to the CP fabrics treated with DP/WR, and the level of improvement is not significantly different from that of the DP/WR cotton fabrics. These results lead to the conclusion that DP/YVR treatments a single pad bath on CP are effective finishes for improving both DP performance and water repellency.

  • PDF

Behavior of Fill Dam Subjected to Continuous Water Level Change and Overflow (지속적 수위변동 및 월류에 따른 저수지 제체의 거동 연구)

  • Lee, Chungwon;Maeng, Youngsu;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.41-48
    • /
    • 2014
  • In this study, the behavior of fill dam with continuous water level change considering velocity changes via centrifugal model test was investigated. In addition, the collapse of fill dam due to the overflow was also experimentally simulated. The experimental results demonstrate that the pore water pressures and displacements vary in proportion to the water-level-change velocity, and the displacement increment is independent to the water-level-change velocity. Also, it is confirmed that the continuous water level change induces to the progress of fill-dam deformation due to displacement accumulation and the fill-dam stability dramatically degrades owing to the overflow. Hence, the real-time monitoring of pore water pressures and displacements of fill dam, and the control of water level in heavy rain through the countermeasure such as opening sluice gates are needed to ensure the stability of fill dam.

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

Transmission Power Control for Compensation of Rainfall Attenuation at Mini-Hub (분산제어국 강우감쇠 보상을 위한 송신전력 제어방안)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2292-2294
    • /
    • 2004
  • At satellite communication system for flood forecasting and warning, VSAT system needs to good performance for aquisition of rainfall and water-level data. But, it has difficult for obtaining good performance because of the rainfall attenuation. Thus, in this paper, we introduced the efficiency plan of the transmission power control for Mini-Hub Station.

  • PDF

Prediction of water level in a tidal river using a deep-learning based LSTM model (딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측)

  • Jung, Sungho;Cho, Hyoseob;Kim, Jeongyup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1207-1216
    • /
    • 2018
  • Discharge or water level predictions at tidally affected river reaches are currently still a great challenge in hydrological practices. This research aims to predict water level of the tide dominated site, Jamsu bridge in the Han River downstream. Physics-based hydrodynamic approaches are sometimes not applicable for water level prediction in such a tidal river due to uncertainty sources like rainfall forecasting data. In this study, TensorFlow deep learning framework was used to build a deep neural network based LSTM model and its applications. The LSTM model was trained based on 3 data sets having 10-min temporal resolution: Paldang dam release, Jamsu bridge water level, predicted tidal level for 6 years (2011~2016) and then predict the water level time series given the six lead times: 1, 3, 6, 9, 12, 24 hours. The optimal hyper-parameters of LSTM model were set up as follows: 6 hidden layers number, 0.01 learning rate, 3000 iterations. In addition, we changed the key parameter of LSTM model, sequence length, ranging from 1 to 6 hours to test its affect to prediction results. The LSTM model with the 1 hr sequence length led to the best performing prediction results for the all cases. In particular, it resulted in very accurate prediction: RMSE (0.065 cm) and NSE (0.99) for the 1 hr lead time prediction case. However, as the lead time became longer, the RMSE increased from 0.08 m (1 hr lead time) to 0.28 m (24 hrs lead time) and the NSE decreased from 0.99 (1 hr lead time) to 0.74 (24 hrs lead time), respectively.

Analysis of Water Quality Variation by Lowering of Water Level in Gangjeong-Goryong Weirin Nakdong River (낙동강 강정고령보 수위저하 운영에 따른 수질 변동특성 분석)

  • Park, Dae-Yeon;Park, Hyung-Seok;Kim, Sung-Jin;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.245-262
    • /
    • 2019
  • The objectives of this study were to construct a three-dimensional water quality model (EFDC) for the river reach between Chilgok Weir and Gangjeong-Goryong Weir (GGW) located in Nakdong River, and evaluate the effect of hydraulic changes, such as water level and flow velocity, on the control of water quality and algae biomass. After calibration, the model accurately simulated the temporal changes of the upper and lower water temperatures that collected every 10 minutes, and appropriately reproduced changes in organic matter, nitrogen, phosphorus, and cyanobacteria. However, the simulated values were overestimated for the diatoms and green algae cell density, possibly due to the uncertainties of the parameters associated with algae metabolism and the lack of zooplankton predation function in the simulations. As a result of scenario simulation of running the water level of GGW from EL. 19.44 m to EL. 14.90 m (4.54 m drop), Chl-a and algae cell density decreased significantly.In particular,the cyanobacteria on the surface layer, which causes algal bloom, declined by 56.1% in the low water level scenario compared to the existing management level. The results of this study are in agreement with the previous studies that maintenance of critical flow velocity is effective for controlling cyanobacteria, and imply that hydraulic control such as decrease of water level and residence time in GGW is an alternative to limit the overgrowth of algae.

Control and Investigation for Hazardous Characteristics of Metalworking Fluids Used in Korea - Control and Hazardous Characteristics of Soluble MWF (우리나라에서 사용하는 광물유(금속가공유)의 유해특성과 관리대책에 관한 연구 -수용성 금속가공유의 유해특성과 관리대책-)

  • Paik, Nam-won;Park, Dong-wook;Yoon, Chung-sik;Kim, Seung-won;Kim, Shin-bum;Kim, Kwi-suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1998
  • The objectives of this study were both to evaluate the level and correlations of hazardous agents and to suggest measures to control industrial hygiene problems caused by using water-soluble metalworking f1uids(MWF). Geometric mean of formaldehyde(0.039 ppm) was higher than criteria of NIOSH(0.016ppm). Formaldehyde, originally existed in the biocide, is released and used to kill microbes in soluble MWF. Microbe concentrations were above $10^4No./mL$ in 14 MWF tanks among 20 tanks surveyed. Nitrosamines that is formed by reaction of nitrosating group and amines was detected to $18.4-47.1{\mu}g/m^3$. Formaldehyde concentration was low when microbes were abundant(r=-0.67, p=0.011), and high when open tank area was wide(r=0.75. p=0.012). The significant relationship between pH and microbes(r=-0.76. p=0.003) was also observed. The predominant bacteria species in MWF were Pseudomonas spp., Bacillus spp., Comamonas testosteroni, Acinetobacter haemolyticus, Bordertella bronchiseptica in order. Therefore, hazardous agents emitted by using water-soluble MWF seems to be correlated microbial growth. In order to minimize worker's exposure to several hazardous agents by an water-soluble MWF and to increase productivity, microbial growth must be controlled to the lowest level as possible. Administrative control as well as engineering control must comprehensively be applied to control microbe's growth in water-soluble MWF.

  • PDF

Organic Water Additive on Growth Performances, Hematological Parameters and Cost Effectiveness in Broiler Production

  • Saha, Munmun;Chowdhury, Sachidananda Das;Hossain, Md. Elias;Islam, Md. Kamrul;Roy, Bishwajit
    • Journal of Animal Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.517-523
    • /
    • 2011
  • The experiment was conducted with 144 broiler chicks from day-old to 5 weeks of age to investigate the efficacy of a water additive in broiler production. The chicks were randomly distributed into four different treatments namely T1 (control), T2 (water additive as per recommendation level), T3 (25% less than recommendation) and T4 (25% more than recommendation). Body weight of control group was higher in 2nd week of age, but at the end of the experiment additive groups showed higher values compare to control (p<0.05). Body weight gain was increased and feed conversion ratio was improved in the additives groups during the finishing and total period, although feed intake was different among the additive groups (p<0.05). When the hematological parameters were evaluated, packed cell volume and total erythrocytes counts were increased in the additive group that received 25% more than recommendation, and hemoglobin in 25% less than recommendation group. Mean cell volume and mean cell hemoglobin of the additive groups showed lower (p<0.05) values compare to the control, but other parameters were not affected. Sales price and profit were significantly higher in the additive groups compare to the control, although total production cost was increased in the additive groups (p<0.05). All levels of water additive increased profit in comparison with the control but 25% less than recommendation level appeared to be most profitable and cost effective. It also suggests that any additive considered for poultry, must undergo trial for determining efficacy as well as its cost effectiveness for application.