DOI QR코드

DOI QR Code

Behavior of Fill Dam Subjected to Continuous Water Level Change and Overflow

지속적 수위변동 및 월류에 따른 저수지 제체의 거동 연구

  • Lee, Chungwon (Institute for Advanced Construction Materials, Kangwon National University) ;
  • Maeng, Youngsu (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kim, Yongseong (Department of Regional Infrastructure Engineering, Kangwon National University)
  • Received : 2014.02.24
  • Accepted : 2014.05.02
  • Published : 2014.06.01

Abstract

In this study, the behavior of fill dam with continuous water level change considering velocity changes via centrifugal model test was investigated. In addition, the collapse of fill dam due to the overflow was also experimentally simulated. The experimental results demonstrate that the pore water pressures and displacements vary in proportion to the water-level-change velocity, and the displacement increment is independent to the water-level-change velocity. Also, it is confirmed that the continuous water level change induces to the progress of fill-dam deformation due to displacement accumulation and the fill-dam stability dramatically degrades owing to the overflow. Hence, the real-time monitoring of pore water pressures and displacements of fill dam, and the control of water level in heavy rain through the countermeasure such as opening sluice gates are needed to ensure the stability of fill dam.

본 연구에서는 현장응력상태 및 수위변동을 재현한 원심모형실험을 통하여 속도변화를 고려한 지속적 수위승강에 따른 제체의 거동을 검토하였으며, 기후변화에 따른 기습적 폭우 상황을 상정한 월류 시 제체의 파괴거동을 모사하였다. 실험 결과, 제체내의 간극수압 및 변위는 수위상승 및 하강속도에 비례하여 증감하며, 제정부 및 제체 하류측 사면부의 변위증분은 수위승강속도에 대하여 독립적임을 알 수 있었다. 또한 반복적이고 지속적인 수위변동은 변위의 누적을 통해 제체의 변형을 진행시키는 요인이 되며, 월류에 의해 저수지 제체의 안정성이 급격히 저하됨을 확인하였다. 따라서 호우 등으로 수위가 급상승하는 경우 간극수압, 변위 등을 실시간으로 감시하고, 이상 발생 시 수문개방 등을 통해 저수지의 수위를 조절하는 조치를 강구할 필요가 있다.

Keywords

References

  1. Choo, Y. W., Cho, S. E. and Shin, D. H. (2012), Monitoring of fill dams for internal defect via centrifuge model tests, Journal of Korean Society of Civil Engineers, Vol. 32, No. 2C, pp. 37-47. (in Korean)
  2. Kim, D. S., Kim, N. R., Choo, Y. W. and Cho, G. C. (2013), A newly developed state-of-the-art geotechnical centrifuge in South Korea, KSCE Journal of Civil Engineering, Vol. 17, No. 1, pp. 77-84. https://doi.org/10.1007/s12205-013-1350-5
  3. Lee, C. W. (2012), A study on dynamic stability of unsaturated road embankments using dynamic centrifugal model tests, Ph.D. dissertation, Kyoto University, Japan, p. 86.
  4. Lee, C. W., Chang, D. S., Park, S. Y. and Kim, Y. S. (2014), Evaluation of behavior characteristics of reservoir levee subjected to increasing water levels, J. Korean Soc. Hazard Mitig., Vol. 14, No. 1, pp. 155-165. (in Korean) https://doi.org/10.9798/KOSHAM.2014.14.1.155
  5. Narita, K., Kimura, K. and Okumura, T. (2008), Seepage behavior and safety evaluation in embankment dam during rapid drawdown, Journal of Japan Society of Dam Engineers, Vol. 18, No. 1, pp. 10-20.
  6. Schofield, A. N. (1980), Cambridge geotechnical centrifuge operation, Geotechnique, Vol. 20, No. 3, pp. 227-268.
  7. Sutherland, H. J. and Rechard, R. P. (1984), Centrifuge simulations of a stable tailings dam, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 110, No. 3, pp. 390-402. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(390)
  8. Yang, Z., Elgamal, A., Adalier, K. and Sharp, M. K. (2004), Earth dam on siquefiable foundation and remediation: Numerical simulation of centrifuge experiments, J. Engrg. Mech., Vol. 130, No. 10, pp. 1168-1176. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1168)
  9. Yan-ling, D. U. (1997), Study on the centrifugal model test for earth-rock dam, Water Resources and Hydropower Engineering, Vol. 28, No. 6, pp. 54-58.