• Title/Summary/Keyword: water flooding

Search Result 722, Processing Time 0.025 seconds

A Study on the Optimization of Water Balance Control in the Intermittent PEM Fuel Cell

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Hong, Boo-Pyo;Bakhtiar, Agung
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • One of the water management goals in PEM fuel cell is to avoid flooding and drying in the membrane, therefore the air humidification process is required. In order to increase water removal out of the membrane, the water management system may require the dehumidification process and it also requires a large space for application, moreover the process time is slow. In conformity with this fact, this present study proposes an advanced dynamic fuel cell water management which can be an intermittent optimization control using air flow rate instead of the air humidity as an variable in the optimization process. The results of this study have shown that the membrane flooding and drying can be avoided after being assisted by air velocity controlling method.

Comparisons in Anatomical Morphology Between Soybean Cultivars of Different Flooding Tolerance under Early Vegetative Flooding Conditions (영양생장기 습해 처리에 따른 콩 품종의 해부형태학적 특성 비교)

  • Lee, Choong-Yeul;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.320-324
    • /
    • 2007
  • To characterize flooding-affected anatomical morphology changes in soybean, flooding-tolerant cv Pung-sannamulkong (PSNK) and flooding-sensitive cv. Sobaek-namulkong (SBNK) at 5 trifoliate leaf stage were exposed to flooding by maintaining tap water 2 cm above soil surface for 9 days and resultant microscopic anatomical changes in leaf and hypocotyl cross-sections along with chlorophyll content and photosynthetic rate changes were compared. Flooding-sensitive SBNK exhibited more significant decrement in chlorophyll content, photosynthetic rate, number of palisade parenchyma, and leaf dry matter compared to cv. PSNK. Flooding decreased fineness of palisade parenchyma, while inducing wider xylem vessel, especially in PSNK. The aerenchyma formation in hypocotyls under flooding could be observed only in flooding-resistant PSNK. All these anatomical changes seems to be related with higher physiolocial activity and resultant resistance against flooding in PSNK compared to flood-sensitive PSNK.

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

A Study on the Urban Inundation Flooding Forecasting According to the Water Level Conditions (내수위 조건에 따른 도시내수침수 예보에 관한 연구)

  • Choo, Tai-ho;Choo, Yean-moon;Jeon, Hae-seong;Gwon, Chang-heon;Lee, Jae-gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.545-550
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon occurring all over the world. As a result, as the hydrological aspect of the urban watershed changes, the increase in impervious area leads to serious domestic flood damage due to increased rainfall. In order to minimize the damage of life and property, domestic flooding prediction system is needed. In this study, we developed a flood nomogram capable of predicting flooding only by rainfall intensity and duration. This study suggests a method to set the internal water immersion alarm criterion by analyzing the characteristics of the flooding damage in the flooded area in the metropolitan area where flooding is highly possible and the risk of flooding is high. In addition, based on the manhole and the pipe, the water level was set as follows under the four conditions. 1) When manhole overflows, 2) when manhole is full, 3) when 70% of the pipe is reached, and 4) when 60% of the pipe is reached. Therefore, it can be used as a criterion and a predictive measure to cope with the pre-preparation before the flooding starts, through the rainfall that causes the flooding and the flooding damage.

Effect of Flooding and Soil Salinity on the Growth of Yam (Dioscorea batatas) Transplanted by Seedling of Aerial Bulblet in Saemangeum Reclaimed Tidal Land

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • The effect of flooding and soil salinity on the growth of yam (Dioscorea batatas) were studied on the experimantal site temporally established in the south-eastern part of Saemangeum Reclaimed Tidal Land (near Gwanghwal myun, Gimjae-gun, Jellabukdo, Korea). Yam seedlings planted by using aerial bulblet as alternative of sliced tubers, were grown for 20-days and transplanted in black-vinyl mulched ridges (about 20 cm in height) at 70cm interval by $20{\times}60cm$ spacing in the $4^{th}$ of May, 2010. Soil salinity was maintained at lower than 1.2 ds $m^{-1}$ during the growing period and did not result to salt injury in all plants. However, flooding injury very seriously led to plant death and plant mortality rates at $67{\pm}21$ and $82{\pm}9%$ of yam plants in the compost and no compost treatment, respectively, died by heavy flooding during the rainy summer season. The main reasons of the flooding injury included the decreased rainfall acceptable capacity (RAC) after the rising of water table and a slowdown of water infiltration rate after the formation of an impermeable soil crust in the furrow bottom with continuous and heavy downpour during the rainy summer season. The effect of compost treatment was not statistically observed because of the severe spatial difference caused by wet injury, although yam tuber yield was higher at 30 kg $10^{-1}$ in the compost treatment than in the no-compost treatment at 20 kg $10^{-1}$. However, the size of tuber ranged at 1.23 to 1.60 cm in diameter and 3.7 to 5.0 cm in length in all both treatment, which means they are still reproducible for the next cropping season. Conclusively, proper counter-flooding measure and soil salinity control critically important for successful yam production in Saemangeum Reclaimed Tidal Land.

Urban Waterway System and Construction Method for Runoff Reduction (유출저감을 위한 도시형 수로 시스템 및 시공방법)

  • Oh, Yungtak;Han, Seungwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.25-33
    • /
    • 2021
  • This technology is to let rainwater flow into a waterway that is located side gutter of a street with blocking garbage including cigarette butts at the same time. The first waterway is located beside the sidewalk and it enhances the water circulation in a city. This waterway is filled with aggregates and filter media, which removes fine dust that is washed out of the street and let water flow down to the earth. The second waterway is located beside the street and it retains rainwater temporarily with decreasing its flow speed. The second waterway shall reduce flooding damages by avoiding bottleneck situation in the street inlets and storm water pipelines which is the main causation of flooding in a city.

Forecasting Model for Flood Risk at Bo Region (보 지역 홍수 위험도 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • During a flood season, Bo region could be easily exposed to flood due to increase of ground water level and the water drain difficulty even the water amount of Bo can be managed. GFI for the flood risk is measured by mean depth to water during a dry season and minimum depth to water and tangent degree during a flood season. In this paper, a forecasting model of the target variable, GFI and predictors as differences of height between ground water and Bo water, distances from water resource, and soil characteristics are obtained for the dry season of 2012 and the flood season of 2012 with empirical data of Gangjungbo and Hamanbo. Obtained forecasting model would be used for keep the value of GFI below the maximum allowance for no flooding during flooding seasons with controlling the values of significant predictors.

Comparison of inundation patterns of urban inundation model and flood tracking model based on inundation traces (침수 흔적도 기반으로 도시침수 모형과 홍수추적모형의 침수양상 비교)

  • Choi, Jonghwa;Jeon, Jaehyun;Kim, Taehyung;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.71-80
    • /
    • 2021
  • In recent years, the possibility of flooding due to the increase in the incidence of high-frequency rainfall due to abnormal rainfall and the increase in concentrated torrential rain is increasing. Also, the amount of rainwater runoff is increasing due to the increase of the impermeable layer in the city due to the concentration of population due to urbanization and concentration of development. Due to the characteristics of the developed city, it is located in the vicinity of rivers and in the lowlands. For the analysis of inundation in water, using XP-SWMM, which can analyze stormwater pipelines and surface flows, and FLO-2D models that can track flood-sluice curves and rainfall-spill curves, based on hydraulic and hydrological analysis. Inundation analysis was conducted and comparative review was conducted. The patterns of flooding of the two models were compared, and a model suitable for domestic flooding was selected.

New Horizontal Pre-Drainage System in Subsea Tunnelling (수평시추 방식에 의한 해저터널 시공중의 막장 수압경감)

  • Hong, Eun-Soo;Shin, Hee-Soon;Park, Chan;Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • Most of flooding cases in tunnels are associated with huge inrushes of water due to the fracture zone with very high water head. To find out the causes and countermeasures for flooding cases, a dozen of tunneling cases are studied. Case studies presented here show that if the flooding had been forecasted and pre-drained prior to the tunnel excavation, such accidents could have been prevented. From this observation, we suggest a new horizontal drainage system with pre-investigation and pre-drainage concept. Seepage analyses are performed to analyze the water head reduction effect on the tunnel face by drainage pipes during the construction of subsea tunnels. Drainage system analyses are performed to analyze performance of the drainage system. These analysis results show that the suggested horizontal pre-drainage system provides a clear drainage and water head reducing effect. Finally, the proposed system can be a new alternative to the present water controlling methods applied to subsea tunnels.

A Numerical Study on the Coupled Dynamics of Ship and Flooding Water (선박 운동과 내부 유동의 연성 운동에 관한 수치해석 연구)

  • Hong, Sa-Young;Kim, Jin;Park, Il-Ryong;Choi, Seok-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.631-637
    • /
    • 2006
  • This paper presents a numerical method to solve the ship motion coupled with internal fluid flow. Physically the internal fluid motion is coupled with the ship motion. Hitherto the previous numerical results of the coupled motion predict only the general tendency with experiments. The main reason of inaccuracy is that the coupled dynamics of ship motion and internal water motion is not accurately accounted. In this study CFD technique based on VOF is employed for the accurate analysis of flooding water motion. Some cases of the 24th ITTC stability committee's benchmark.study for tanker with internal fluid are analyzed by coupling the ship motion and sloshing dynamics. The calculated ship motion is compared with the experimental result to validate the coupled scheme and is in agreement with the experimental result.