• Title/Summary/Keyword: water environmental management

Search Result 2,990, Processing Time 0.03 seconds

Risk Analysis of Inorganic Arsenic in Foods (식품 중 무기비소의 위해 분석)

  • Yang, Seung-Hyun;Park, Ji-Su;Cho, Min-Ja;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.227-249
    • /
    • 2016
  • Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has been withdrawn, while the EFSA panel suggested $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg\;b.w./day$ for cancers of the lung, skin and bladder, as well as skin lesions. Rice, seaweed and beverages are known as food being rich in inorganic arsenic. As(III) is the major form of inorganic arsenic in rice and anaerobic paddy soils, while most of inorganic arsenic in seaweed is present as As(V). The inorganic arsenic in food was extracted with solvent such as distilled water, methanol, nitric acid and so on in heat-assisted condition or at room temperature. Arsenic speciation analysis was based on ion-exchange chromatography and high-performance liquid chromatography equipped with atomic absorption spectrometry and inductively coupled plasma mass spectrometry. However, there has been no harmonized and standardized method for inorganic arsenic analysis internationally. The inorganic arsenic exposure from food has been estimated to range of $0.13{\sim}0.7{\mu}g/kg$ bw/day for European, American and Australian, and $0.22{\sim}5{\mu}g/kg$ bw/day for Asian. The maximum level (ML) for inorganic arsenic in food has established by EU, China, Australia and New Zealand, but are under review in Korea. Until now, several studies have conducted for reduction of inorganic arsenic in food. Inorganic arsenic levels in rice and seaweed were reduced by more polishing and washing, boiling and washing, respectively. Further research for international harmonization of analytical method, monitoring and risk assessment will be needed to strengthen safety management of inorganic arsenic of foods in Korea.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Long-Term Variations of Water Quality in Jinhae Bay (진해만의 장기 수질변동 특성)

  • Kwon, Jung-No;Lee, Jangho;Kim, Youngsug;Lim, Jae-Hyun;Choi, Tae-Jun;Ye, Mi-Ju;Jun, Ji-Won;Kim, Seulmin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.324-332
    • /
    • 2014
  • In order to reveal the long-term variations of water quality in Jinhae Bay, water qualities had been monitored at 9 survey stations of Jinhae Bay during 2000~2012. The surface and bottom waters concentrations of chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and chlorophyll-a (Chl.-a) were higher at the survey stations of Masan Bay than the stations of other Bays. Especially, station 1 which is located at the inner area of Masan Bay had the highest values in the concentrations of COD, DIN, and Chl.-a because there were terrestrial pollutant sources near the station 1 and sea current had not well circulated in the inner area of Masan Bay. In factor analysis, the station 1 also had the highest factor values related to factors which increase organic matters and nutrients in surface and bottom waters of Masan Bay. However, the stations (st.5, st.6, st.7, st.8, and st.9) of other Bays had lower values of the factors. In time series analysis, the COD concentrations of the bottom waters at 8 stations except for station 1 distinctly decreased. However, the COD concentrations of the surface waters showed no distinct decrease trends at all stations. In the concentrations of nutrients (DIN and DIP) of both surface and bottom waters, there were tremendous decrease trends at all stations. Therefore, these distinct decrease trends of the COD in bottom waters and the nutrients in surface and bottom waters of Jinhae Bay could have been associated with water improvement actions such as TPLMS (total pollution load management system).

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

The Limnological Survey of a Coastal Lagoon in Korea (2): Lake Hyangho (동해안 석호의 육수학적 조사(2): 향호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.1-11
    • /
    • 2004
  • The limnological characteristics of a coastal lagoon were studied in Lake Hyangho, one of a series of brackish lagoons along the eastern coast of Korea. Phytoplankton community structure, physical factors, and chemical factors were surveyed from May 1998 through November 2002 on a two-month interval basis. Temperature, salinity, Secchi disc transparency, TN, TP, organic matter content of sediment, chlorophyll a concentration, dominant phytoplankton species, and phytoplankton cell density were measured. Salinity gradient was formed between the overlying freshwater stream water and the permeated seawater at the bottom. The chemocline was persistent at the depth of 2 ${\sim}$ 5 m that caused discontinuities of salinity, DO, and temperature profiles. The inversion of vertical temperature profiles with higher temperature in deeper layer was observed in early winter. Secchi disc transparency was very low with the range of 0.1 to 1.1m. TP, TN, and Chl. a concentration in the epilimnion was 0.011 ${\sim}$ 0.238 mgP $L^{-l}$, 0.423 ${\sim}$ 2.443 mgN $L^{-l}$, and 0.7 ${\sim}$ 145.2 mg $m^{-3}$, respectively. Sediment was composed of silt and coarse silt. COD, TP, and TN content of dry sediment were 19.7 ${\sim}$ 73.3 mg$O_2\;g^{-1}$, 0.61 ${\sim}$ 1.32 mgP $g^{-l}$ and 0.64 ${\sim}$ 0.88 mgN $g^{-l}$, respectively. Dominant phytoplankton species were chlorophytes (Ankistrodesmus falcatus) and cyanobacteria (Oscillatoria sp. and Merismopedia tennuissima). The total cell density was in the range of 560 ${\sim}$ 35,255 cells $mL^{-l}$.

Optimum Management Plan of Swine Wastewater Treatment Plant for the Removal of High-concentration Nitrogen (고농도 질소제거를 위한 축산폐수 처리시설 적정관리 방안)

  • Shin, Nam-Cheol;Jung, Yoo-Jin;Sung, Nak-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • The amount of swine wastewater reaches about $197,000m^3$ per day at live-stock houses in the whole country. A half of the swine wastewater resources are too small to be restricted legally. This untreated wastewater causes the eutrophication in the water bodies. In case of swine wastewater treatment, the solid-liquid separation must be performed because feces(solid phase) and urine(liquid phase) have large differences in nitrogen and phosphorus concentration. It is necessary to assess exactly the concentration of the pollutants in swine wastewater for planning the wastewater treatment facilities. A full-scale operation was carried out in K city and the plant is consists of conventional plant, the supplementary flocculation basin of chemical treatment process and $anaerobic{\cdot}aerobic$ basin for nitrogen removal. The improved full-scale swine wastewater treatment plant removed the $1,500{\sim}3,000mg/l$ of total-nitrogen(T-N) to 120mg/l of T-N and $131{\sim}156mg/l$ of total-phosphorus(T-P) to $0.15{\sim}1.00mg/l$ of T-N. Accordingly, as a results of operational improvement, the removal efficiencies of T-N and T-P were over $92{\sim}96%$, 99%, respectively. The continuous supply of organic carbon sources and the state of pH played important roles for the harmonious metabolism in anaerobic basin and the pH value of anaerobic basin maintained at about 9.0 for the period of the study.

  • PDF

Investigation of Measurement Feasibility of Large-size Wastes Based on Unmanned Aerial System (UAS 기반 대형 폐기물 발생량 측정 가능성 모색)

  • Son, Seung Woo;Yu, Jae Jin;Jeon, Hyung Jin;Lim, Seong Ha;Kang, Young Eun;Yoon, Jeong Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.809-820
    • /
    • 2017
  • Efficient management of large-size wastes generated from disasters etc. is always in demand. Large-size wastes are closely connected to the environment, producing adverse effects on the air quality, water quality, living environment and so on. When large-size wastes are generated, we must be able to estimate the generated amount in order to transfer them to a temporary trans-shipment site, or to properly treat them. Currently, we estimate the amount of generated large-size wastes by using satellite images or unit measure for wastes; however, the accuracy of such estimations have been constantly questioned. Therefore, the present study was performed to establish three-dimensional spatial information based on UAS, to measure the amount of waste, and to evaluate the accuracy of the measurement. A measurement was made at a waste site by using UAS, and the X, Y, Z RMSE values of the three-dimensional spatial information were found to be 0.022 m, 0.023 m, and 0.14 m, all of which show relatively high accuracy. The amount of waste measured using these values was computed to be approximately $4,273,400m^3$. In addition, the amount of waste at the same site was measured by using Terrestrial LiDAR, which is used for the precise measurement of geographical features, cultural properties and the like. The resulting value was $4,274,188m^3$, which is not significantly different from the amount of waste computed by using UAS. Thus, the possibility of measuring the amount of waste using UAS was confirmed, and UAS-based measurement is believed to be useful for environmental control with respect to disaster wastes, large-size wastes, and the like.

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.

Spatial problems of Korea -A delphi survey- (國土管理의 方向定立을 위한 國土診斷 -專門家 集團의 問題意識을 中心으로-)

  • Kim, Inn;Yu, Woo-Ik;Huh, Woo-Kung;Park, Young-Han;Park, Sam-Ock;Yu, Keun-bae;Choi, Byung-Seon
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.1
    • /
    • pp.16-38
    • /
    • 1994
  • The spatial structure of Korea has been changed drastically during the second half of this century. The events such as the Korean War and the resultant division of the Korean Peninsular into two Koreas, rapid industrialization and urbanization are the major causes among others for the spatial changes of the nation. The changes in turn have spawned a number of spatial problems. It is time, we argue, to diagnose how much the nation is now ill-structured, and to discuss of which directions the long-term spatial management be reoriented. A delphi survey was conducted during the early 1993 to fulfill such research needs. Questionnaires were distributed among geographers, planners, and high governmental officials throughout the nation. These 'experts of spatial problems' were requested to evaluate the past spatial policies and strategies, and to identify spatial and environmental problems at the national, regional and local levels. The survey included questions with regard to the spatial problems in North Korea too. A complementary literature survey in the fields of spatial sciences was accomplished as well in order to identify the major research interests and issues with regard to the nations's spatial structure. The delphi survey results indicatee that the present spatial structure: in relation to consumption, housing and economic activities is satisfactory in overall, while rather poor in terms of education, leisure and community activities. Most of the experts consider infrastructural improvements are urgent in the areas of roads, waste disposal facilitles, railroads, harbors, water supply and drainage systems. The over-concentration of economic, social and political function in the Seoul Metropolitan Region is perceived to be the most serious spatial problem in Korea. The long-term solutions suggested are strategies toward a more balanced regional development as well as toward a cleaner environment. The concensus among the experts for the short-term solution is the redistribution of population and industries from the Seoul Metropolitan Region to the intermediate and small cities. The land use policies and concurrent large-scale infrastructural projects are evaluated largely pertinent and desirable in general. It is, however, suggested that development projects be conducted in a more harmonious way with environment. The survey respondents suggest that the present environmental management policies should be reexamined critically. With regard to regional and local problems, transportation and pollutions are thought to be most serious in the Seoul Metropolitan Region, while employment opportunities, and information, education and health care services are most deprived in small cities and rural areas. The majority of the experts consider a city size of 250, 000-500, 000 population is desirable to live within. Respondents beileve that North Korea's physical environment is still not aggravated much whereas its infrastructural provisions are largely pool. The co-authors of this research figure a "environmentaly sound and spatially balanced Korean Penninsular" as the ideal type of spatial structure in Korea. The basic guidelines toward this ideal prototype are suggested: the recovery of spetial integrity, progressive restructuring of the nation, land uses geared to public welfare rather than private interests, and eco-humanistic approach in spatial policies.

  • PDF

A Study on the Damage Status of the Stone Retaining Wall in 'Namhae Dharanginon', Scenic Sites No.15 (명승 제15호 '남해 다랑이논' 석축의 훼손 실태)

  • Hong, Yoon-Soon;Kim, Oh-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.74-85
    • /
    • 2020
  • Darangnon in Gachon Village, Namhae-gun, Gyeongsangnam-do, is the first designated environment among Korea's industrial-based historical and cultural sites and is still the only one that involves agricultural activities. Although the stonework, which is the infrastructure environment here, has limitations that inevitably lead to natural and artificial deformation due to its nature, there has been no research to consider the situation so far. As of the end of May 2020, this study investigated and analyzed the damage in the sub-area of the survey, which is approximately 30% of the scope of the designation of the scenic spot, from a quantitative and qualitative perspective. As a result of the study, the state of loss, which reveals the physical damage of the arctic rice paddy stone retaining wall in the environment under investigation, was particularly serious around the coast, in the northern area with high slopes, and near tourist information centers and parking lots. On the other hand, the qualitative aspect of the damage to the stonework was noticeable in the repair of heterogeneous materials on the stone retaining wall adjacent to the village and parking lot, and the landscape damage caused by the cladding of plants was found in an environment far away from the residence. In addition, natural environmental factors such as slopes, elevations, and soil showed a close relationship with the degree of physical damage of the stone retaining wall, the higher the slope, the higher the elevation, and the better the soil drainage, the greater the impact. These results suggest that humanities environmental factors such as cultivation activities and management entities have important factors in the physical damage and management of stone retaining wall. Therefore, it is deemed essential to find management measures with local residents along with improving the agricultural environment, such as securing agricultural water and soil improvement, for the preservation of tuna paddies and stone retaining wall in the future.