• 제목/요약/키워드: water environmental management

검색결과 2,961건 처리시간 0.025초

국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향 (Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy)

  • 정세웅;김성진;박형석;서동일
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석 (Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM)

  • 조선주;강민지;권혁;이재운;김상단
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

지방중소도시의 누수관리방법에 대한 효율성 평가 (Efficiency evaluation of water leakage management methods in local small and medium cities)

  • 황진수;최태호;김기범;구자용
    • 상하수도학회지
    • /
    • 제35권2호
    • /
    • pp.121-133
    • /
    • 2021
  • This study set up the estimates of leakage management efficiency evaluation and leakage management goal that could be used in local water distribution networks efficiency business and modernization business. The data were analyzed using data envelopment analysis and multiple regression analysis. To this end, with leakage management input indices concerning leakage reduction activities (e.g., aged pipe replacement, water meter replacement, leakage restoration, and leakage detection) and leakage management calculation indices (e.g., the increase of revenue water ratio and the reduction of leakage ratio), the data on 22 K-water consignment local water supply systems were analyzed for the years from 2004 through 2018. Using the results of efficiency analysis by data envelopment analysis, the other DMUs (Decision Making Unit) benchmarked the DMU with the highest efficiency to maximize the leakage management efficiency for all DMUs. Through this, leakage management goal estimates were drawn with the input indices of four leakage reduction activities and calculation indices of the increase of revenue water ratio and the reduction of leakage ratio by multiple regression analysis for each group based on the revenue water ratio and leakage ratio. The correlation coefficients of the leakage management goal estimate for the criteria for the revenue water ratio amounted to 0.553 and 0.771. The correlation coefficients of the leakage management goal estimate for the criteria for leakage ratio were 0.397 and 0.865. Accordingly, we estimated the quantity and priority of four leakage reduction activities for the target leakage ratio and revenue water ratio.

계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석 (Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test)

  • 염호정;안용빈;정세윤;김윤석;김범철;홍은미
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

영산강·섬진강 수계 효율적 물관리를 위한 유역관리 시스템 구축 (Establishment of Watershed Management System for Efficient Water Management in the Yeongsan and Seomjin River Basin)

  • 정희정;정재운;김갑순;박하나;임병진;허유정;이준배
    • 한국환경농학회지
    • /
    • 제31권2호
    • /
    • pp.200-204
    • /
    • 2012
  • BACKGROUND: Recently, the project for improvement of water quality and preservation of the Yeongsan and Seomjin river basin was actively promoted. However, the publicity for many results of the project is not actively done, thus they are rarely used. Furthermore, there are not sufficient information about the projects preformed by other research institutions. Therefore, the watershed management system for efficient water management is needed in the Yeongsan and Seomjin river basin. CONCLUSION: Firstly, establishment of the Yeongsan and Seomjin river basin management research center, Secondly, construciton of wed-based water management research network. These results will serve as a basic data for efficient water management.

오염할당부하량의 초과현황 및 초과해소를 위한 삭감계획 유형에 따른 페널티 적용방안 (Excessive State of Pollutant Load Allocation and Penalty Application Schemes based on Pollutant Reduction Plan Types for Solving Excessive Problem of Allocation)

  • 박재홍;박배경;오승영;황하선;이재관
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.66-73
    • /
    • 2013
  • Total Maximum Daily Loads (TMDLs) system was introduced to manage pollution load of watershed and to improve water quality of unit watershed so that it is possible to protect dringking water soureces. Load allocation observation is the most important factor in TMDLs system. Because if load allocation is not observed, it is difficult to achieve water quality goal of unit watershed. Also it is impossible to improve water quality of the drinking water sources. Therefore it is necessary to apply some kind of sanctions (penalty) in case of excess of load allocation. The sanctions have to be, however, applied differently based on various reduction plan types, i.e., using the reduction load planed in 2nd phase, delay the completion, additional reduction in 2nd phase, error of the pollution sources, etc. Moreover, the penalty load should be properly imposed, lest it should be overburden the provence. The reduction load trade inter province must be restrictively permmitted only the same unit watershed.

Technical Approaches for Assessment of Ground Water Contamination with TCE in an Industrial Area

  • Jeon, Kweonho;Yu, Soonyoung;Jeong, Jangsik;Son, Yanglae
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 International Symposium
    • /
    • pp.70-86
    • /
    • 2003
  • Despite its usability, TCE has been managed as a hazardous material due to the toxicity and many contamination cases were surveyed in some developed countries. U.S.EPA(Kram et al., 2001) suggested DNAPL characterization methods and approaches based on survey experiences at several sites. However, Korea has not the least assessment of contamination and trial of remediation, although there are a lot of doubtable areas where ground water would be contaminated with TCE. In this study, we try to assess the volume and extent of ground water contamination with TCE and delineate the contamination source zones in an industrial area. Ground water in this area flows through fractures and the contaminant TCE has the properties of high volatility, high density and low partitioning to soil material. Thus, we applied a variety of technical approaches to identify the contamination status; documentary, hydrogeochemical, hydrogeological and geological surveys. In addition, additional survey was performed based on the interim findings, which showed that ground water contamination was limited to the relatively small area with high concentrations to the deep place. The contamination source zone is estimated to be the asphalt test institute where a great deal of TCE has been used to analyze the amount of asphalt soluble in TCE since 1984. Based on the contamination characterization and a myriad of documents about ground water remediation, appropriate site remediation management options will be recommended later. This study is now under way and this paper was focused on describing the technical approaches used to achieve the goals of this study.

  • PDF

관개수원에 따른 논에서의 영양물질 배출 특성 (Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices)

  • 황하선;공동수;신동석;전지홍
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.

수질오염총량관리 목표수질 초과지역에 대한 유황별 초과기여도 분석 (Contributions to the Impaired Water Bodies by Hydrologic Conditions for the Management of Total Maximum Daily Loads)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제28권4호
    • /
    • pp.574-581
    • /
    • 2012
  • It is important to analyze the status of water quality with relation to the stream flow to attain water quality goal more effectively in the unit watersheds for the management of Total Maximum Daily Loads (TMDLs). This study developed a flow duration-water quality distribution graph to figure out water quality appearances on the flow variation and analyzed contributions of water quality observations to the impaired water bodies quantitatively by hydrologic conditions. Factors relating to water quality variation can be analyzed more precisely and assessed on the base of quantified contributions. It is considered that this approach could be utilized to establish a more effective plan for the water quality improvement including the prioritization of pollution reduction options.