• Title/Summary/Keyword: water environmental management

Search Result 2,961, Processing Time 0.033 seconds

Application of HSPF Model for Effect Analyses of Watershed Management Plans on Receiving Water Qualities (유역관리에 따른 수질개선 효과분석을 위한 HSPF 모델 적용)

  • Song, Hye-Won;Lee, Hye-Won;Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.358-363
    • /
    • 2009
  • The HSPF (Hydrological Simulation Program-Fortran) model was applied to the Kyoungan stream watershed to analyze effects of watershed management plans on receiving water qualities. Utilizing BASINS 3.1 GIS program, the Kyoungan stream watershed was divided into 57 sub-basins and model input parameters were obtained, from DEM (Digital Elevation Model), land use type, stream map, and wastewater treatment facilities, etc.. The hydrologic module of the model was validated based on the measured meteorological data and stream flow data. Then the model was calibrated and verified against the field measurements of water qualities, including temperature, DO, BOD, $NO_3-N$, $NH_3-N$, Org-N, TN and TP. In most cases, there were reasonable agreements between measurements and predictions. The validated model was used to analyze the water quality improvements in the main stream of Kyoungan stream according to the watershed management plans in sub-basins, which are three different scenarios: water quality improvement in tributaries through watershed management activities, expansion and up-grade of wastewater treatment plants, and application of first and second scenarios together. It was concluded that expansion and upgrade of wastewater treatment plants would be more effective than watershed management activities. In order to improve water qualities to the satisfactory level, both watershed management and point source control must be required in the Kyoungan stream.

Study on corrosion characteristics of treatment plants in Korea (국내 정수장의 부식성 특성 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Lee, Lee-nae;Choi, Inchol;Ahn, Kyunghee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.707-714
    • /
    • 2016
  • In order to prevent secondary pollution of tap water, corrosion characteristics are investigated, and corrosion index are calculated using LI and LR to manage corrosiveness. As targeted water treatment plants from 2014 (July, once) to 2015 (July and October, 2 times), 70 plants are selected by making a division for each area and water system. (treated water samples, n=240, raw water samples, n=72). In result of pH analysis, treated water was lower than raw water to 7.12, and 7.29, respectively. LI were investigated in the order of Seomjin river, Nakdong river, Han river, Geum river, to -2.08, -1.24, -1.11, -1.10 (at raw water), and -2.18, -1.59, -1.51, -1.35 (at treated water), respectively. In case of water quality goal value (LI = -1) in Japan as control of corrosiveness, management object was investigated about 83.3%.

Optimal Water Management for Classified Irrigation Area of Agricultural Reservoir by using Optimization Programming (최적화기법에 의한 농업용 저수지의 관개면적별 최적용수관리)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper, the study area is selected Sungju Reservoir which was constructed with an agricultural purpose and determined the optimal water management plan among the five cases of classified irrigation area by using Linear Programming. As a results of reservoir operation, the additional water quantity of classified irrigation area showed 16.036${\times}$10$\^$6/m$^3$3/year, 19.404${\times}$10$\^$6/m$^3$/year, 18.864${\times}$100$\^$6/m$^3$/year, 4.032${\times}$10$\^$6/m$^3$/year and 0.672${\times}$10$\^$6/m$^3$/year and the total water supply quantity showed 69.628${\times}$10$\^$6/m$^3$/year, 70.048${\times}$10$\^$6/m$^3$/year, 67.979${\times}$10$\^$ 6/m$^3$/year, 67.979${\times}$10$\^$6/m$^3$/year, and 69.939${\times}$10$\^$6/m$^3$/year respectively. Therefore, the case-II was adopted with water management plan of optimum. It is also known that the maximum irrigation area augmentation effect appears in the case which will use the additional water quantity in field irrigation of the case-II which was adopted.

Characteristics and Management Plan of Water Quality at the Water Pollution Deterioration Area of the Upper Stream of Gapcheon (갑천 상류부의 수질오염 우려구간 수질특성 및 수질관리방안)

  • Jang, Yuho;Son, Bongho;Chu, Shaoxiong;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.399-408
    • /
    • 2019
  • The average annual water quality at Yongchon Bridge, Bonggok 2 Bridge, and Gasuwon Bridge in upstream of Gapcheon in 2018 was Ib grade (good) in organic matters, including BOD and TOC compared to the local environmental standard in Daejeon. However, their monthly changes for TOC partially exceeded the standard during the busy farming season at Bonggok 2 Bridge and Gasuwon Bridge. Although the annual average TP was within the standard, the monthly change at Bonggok 2 Bridge partially exceeded the standard. For Dugyecheon, the annual average water quality in 2018 at Umyeon-dong Bridge and Wonjeong Bridge, which are downstream of the Gyeryong public sewage treatment plant, exceeded the local environmental standard in BOD. COD was exceeded, and TP was within the standard. It seemed that the causes of deteriorated water quality downstream of Dugyecheon were discharges of agricultural water from agricultural land and effluent from the Gyeryong public sewage treatment plant. Assuming the pollution load of 100% based at the Mulangil point of the mainstream of Gapcheon, the ratio of BOD load and TOC load were as high as 58% and 47%, respectively. At the basin of Bonggok 2 Bridge and Mulangil, the loads downstream of Dugyecheon including the Gyeryong public sewage treatment plant were as high as 43% for TN and 56% for TP, respectively, indicating that Dugyecheon had a major impact on the water quality at the mainstream of Gapcheon.

Designation and Management of Water Source Protection Areas for Indirect Intakes

  • Choi, Ji-Yong;Hwang, Dae-Ho
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.231-237
    • /
    • 2010
  • With increased chemical and economic development activities in upstream areas, the amounts of pollutants released have increased, and as such, so has the need for positive management of water supply source areas. Although more than 90% of the water supply sources in Korea depend on direct intake from surface water, the interest in indirect intake, such as riverbank filtration water, has recently risen, with some local governments currently undertaking indirect intake. Even in cases of indirect intake, water supply source protection zones need to be assigned for the comprehensive control of pollutants. To establish water quality protection zones for indirect intake, the scope of the protection zones needed to reflect the hydrological features of the water-bearing deposits of each site. Water source protection areas were estimated and presented as the 1st (within a 100 m radius from an intake well) and 2nd (within a 2 km radius from an intake well) zones. The 1st zone was more sensitive; hence, the installation of various facilities should be prohibited, and the area should be regarded as off-limits. For the 2nd zone, appropriate management should prohibit and restrict activities already present in the water source protection zone.

Public Perceptions and Support of Environmental Management in the Source Area of Drinking Water for Beijing, China

  • Wang, Xiaoyan;Feng, Qing;Zhang, Yafan;Duan, Shuhuai;Novotny, Vladimir
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Based on a survey of citizens and data analysis on the environmental status of the Miyun Reservoir watershed, China, the environmental awareness of citizens residing in the watershed and the impacting factors are discussed. The contingent valuation method was used to evaluate the willingness of villagers to pay (WTP) for abatement of the rural domestic pollution and to assess the intensity level of the villagers' desire for improving environmental conditions in the Miyun Reservoir watershed. It was found that rural watershed residents had a fundamental cognitive understanding of the pollution status and protection measures of the Miyun Reservoir. However, based on the survey, local residents had only a small interest in their participation to improve the environmental status of the reservoir, despite their general attitude to protect the reservoir being very positive. Gender and family income were closely associated with the overall attitudes of the population. Public media are the most preferable means for conveying knowledge of environmental protection to people living in the watershed. Increasing the educational level, along with income, are the best ways to enhance the desire of the villagers to improve the environmental quality and management.

Management Measures for the Control of Agricultural Reservoirs in Han River Watershed (한강수계 농업용저수지 관리방안)

  • Kim, Ho-Sub;Kong, Dong-Soo;Jung, Dong-Il;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.386-393
    • /
    • 2009
  • This study was carried out to assess water quality and to introduce the management measures for water quality improvement with the collected data from 87 agricultural reservoirs in Han river watershed. According to the water quality criteria (WQC) for lake based on the COD, TP, TN and chl.a concentration, 18, 16, 4 and 19 of 87 reservoirs exceed class IV, respectively. Based on the trophic state index (TSI) with chl.a concentration, 51 of selected reservoirs appeared to be eutrophic. Phosphorus was limiting nutrient on algal growth in 58 reservoirs. TP, chl.a and COD concentration in 23 of 49 agricultural reservoirs with chl.a concentration ${\geq}25{\mu}g/L$ and eutrophic exceed class IV by WQC. Also, the mean depth in 21 of 23 reservoirs was below 5m. Our results suggest that advanced wastewater treatment and crop land control in watershed of reservoirs with TP concentration ${\geq}0.1mg/L$ would be a effective tool to improve water quality. Dredging would to be effective measure in reservoirs with mean depth < 5 m and relatively old age. In reservoirs with chl.a concentration ${\geq}50{\mu}g/L$, application of technique such dissolved air flotation (DAF) and P inactivation be effective to improve water quality by removing particulate matters in water column. The management measure to control inflow such as sedimentation basin, Pre-dam and diversion would to be application in reservoirs with shallow depth, while large watershed and surface area.

Performance Evaluation of Water Loss Management in Urban Areas Using Different Performance Indicators (여러 가지 지표를 이용한 전국도시의 물손실관리 수행능 비교평가)

  • Chung, Shin-Ho;Yu, Myong-Jin;Koo, Ja-Yong;Lee, Hwa-Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.117-127
    • /
    • 2006
  • Recently International Water Association(IWA) has proposed new performance indicators for water supply services and their successful applications are being reported continually. According to the various reports, the percentage indicators were suggested not to be used for performance comparison, especially where the targeted areas have great difference in consumption per service connection. But unfortunately in Korea the revenue water ratio, one of the percentage indicators is still being used to set up the goal of water-related administration and to compare the performances between systems. Therefore this study aimed to prove the inapplicability of the percentage indicators with nation-wide data and to suggest better performance indicators for more efficient water loss management. According to the result of the comparison of various performance indicators with conventional one, it is roved that percentage indicators ca not evaluate the performance efficiently where the local situations are significantly different. It is suggested that the better performance indicators such as real losses per service connection or ILI should be used to benchmark the performances of water suppliers on water loss management so thai the problems of water losses could be identified easily and recovered effectively.

Analysis of Sediment Discharge by Long-term Runoff in Nakdong River Watershed using SWAT Model (SWAT 모형을 이용한 낙동강 유역의 장기 유출에 따른 유사량 분석)

  • Ji, Un;Kim, Tae-Geun;Lee, Eun-Jeong;Ryoo, Kyong-Sik;Hwang, Man-Ha;Jang, Eun-Kyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.723-735
    • /
    • 2014
  • Sediment discharge by long-term runoff in the Nakdong River watershed should be predicted for the maintenance and management of the Nakdong River newly changed by the four major river restoration project. The data establishment by the analysis of runoff and sediment discharge using the long-term watershed model is necessary to predict possible problems by incoming sediments and to prepare countermeasures for the maintenance and management. Therefore, sediment discharges by long-term runoff in the main points of the Nakdong River were calculated using SWAT(soil and water assessment tool) model and the relations and features between rainfall, runoff, and sediment discharge were analyzed in this study. As a result of sediment discharge calculation in the main points of the Nakdong River and tributaries, the sediment discharge at the outlet of the Naesung Stream was greater than the Jindong Station in the Lower Nakdong River from 1999 to 2008 except the years with low precipitation. The sediment discharge at the Nakdong River Estuary Barrage (NREB) was corresponding to 20% of the Jindong Station which is located about 80 km upstream from NREB.

Evaluation of SELECT Model for the Quality Prediction of Water Released from Stratified Reservoir (성층화된 저수지의 방류수 수질예측을 위한 SELECT 모델의 적용성 검토)

  • Lee, Heung Soo;Chung, Se Woong;Shin, Sang Il;Choi, Jung Kyu;Kim, Yu Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.591-599
    • /
    • 2007
  • The quality of water released from a stratified reservoir is dependent on various factors such as the location and shape of intake facility, structure of reservoir stratification, profile of water quality constituent, and withdrawal flux. Sometimes, selective withdrawal capabilities can provide the operational flexibility to meet the water quality demands both in-reservoir and downstream. The objective of this study was to evaluate the performance of a one-dimensional reservoir selective withdrawal model (SELECT) as a tool for supporting downstream water quality management for Daecheong and Imha reservoirs. The simulated water quality variables including water temperature, dissolved oxygen (DO), conductivity, turbidity were compared with the field data measured in tailwater. The model showed fairly satisfactory results and high reliability in simulating observations. The coefficients of determinant between simulated and observed turbidity values were 0.93 and 0.95 for Daecheong and Imha reservoirs, respectively. The outflow water quality was significantly influenced by water intake level under fully stratified condition, while the effect of intake amount was minor. In conclusion, the SELECT is simple but effective tool for supporting downstream water quality prediction and management for both reservoirs.