• Title/Summary/Keyword: water environment

Search Result 13,353, Processing Time 0.038 seconds

Optimal Operation Condition of Livestock Wastewater Treatment Using Shortcut Biological Nitrogen Removal Process (단축질소제거 공정을 이용한 가축분뇨의 적정 처리조건 연구)

  • Jin-Young Kang;Young-Ho Jang;Byeong-Hwan Jeong;Yeon-Jin Kim;Yong-Ho Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.390-395
    • /
    • 2023
  • The feasibility of applying the shortcut nitrogen removal process to treat livestock wastewater on individual farms was examined, and appropriate operating parameters were established. As a result,, it was determined that the nitrification reaction was carried out under 550 mg/L of ammonium nitrogen concentration, but it was less effective under conditions of high ammonia concentration. Consequently, it was confirmed that a partial injection of inflow water was necessary to minimize the effects of ammonia toxicity. Following the sequential batch reactor (SBR) operation results, it was difficult to achieve the effluent quality standard without an external carbon source. Also, selection of the appropriate hydraulic retention time was critical for the optimal SBR operation. Following the livestock farm application, with external carbon source injecting, the total nitrogen concentration in the effluent was 85.1 mg/L. This result revealed that the standard could be accomplished through a single treatment on individual livestock farms. The ratio of nitrite nitrogen to ammonia nitrogen in the effluent was verified to be suitable for implementing the anammox process with a 10 days of hydraulic retention time. This study demonstrated the potential applicability of process in the future. However, in order to apply to livestock farms, managing variations in wastewater load across individual farms and addressing reduced nitrogen oxidation efficiency during the winter season are crucial.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Source Tracking of Particular Matters using Stable Isotope Analysis and Water Quality Characteristics in Gulpo and Anyang Stream, Han-River (한강수계 굴포천과 안양천에서 안정동위원소와 수질 특성을 이용한 입자성 물질의 기원 추적)

  • Hong, Jung-Ki;Im, Jong Kwon;Son, Ju Yeon;Noh, Hye-Ran;Yu, Soon-Ju;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.116-124
    • /
    • 2020
  • This study aims to identify the characteristics of organic matter and pollutant sources using water quality and stable isotope ratios (δ15N, δ13C) of the two inflow tributaries (Gulpo (GP) and Anyang (AY) streams). Water samples were analyzed in June and September 2018, and the results showed that the concentrations of nutrients, such as TN and NO3-N, were increased at GP4, which is located at the downstream of sewage treatment facilities(STFs). TOC and TN ratios showed a strong positive correlation (R2 = 0.77, p<0.01) at all points except for GP4. The results of GP's stable isotope ratio analysis do not appear to be a constant cluster compared to AY because GPs with large amounts of pollutants from the industry (metal processing companies, etc.) have less tributary, shorter waterway and significantly different external sources. This could be attributed to different sources of external inflow despite its smaller number of tributaries and shorter waterways than AY. In the first half of the year, the δ155N of GP4 was affected by discharge of STFs, while AY3 seemed to have an influence of tributary than the discharge of STFs. Consequently, using water quality, stable isotope ratio and C/N, the sources of contamination in two streams with different contaminants were identified and origin was estimated.

Relationship among Inflow Volume, Water Quality and Algal Growth in the Daecheong Lake (대청호 유입유량 변동과 수질 및 조류증식의 관계)

  • Cheon, Se-Uk;Lee, Jea-An;Lee, Jay J.;Yoo, Yung-Bok;Bang, Kyu-Chul;Lee, Yeoul-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.342-348
    • /
    • 2006
  • Changes in water quality and algal growth according to the differences in the inflow volume were investigated in the Daecheong Lake from 1998 to 2001. Until year 2000, inflow volume considerably depended on the rainfall throughout the basin. However, the correlation was low since 2001 when water storage in the upstream Yongdam Lake was started. According to inflow volume-TP relationship analyses, significant correlation was found at up- and middle-stream sites, excluding down-stream site of the Daechong Lake. For chlorophyll-a, correlation was found with flow volume at all sites except for Choo-So. In a dry year, although nutrients loads were relatively lower than those in rainy years, there were higher concentrations of chlorophyll-a and massive bloom of Microcystis. Limiting factors for algal growth seems to be not the volume of nutrients load but retention time and physical disturbance of the water body influenced by inflow volume. Thus, in the Daecheong lake, it would be more important to focus on the management of eutrophication in dry years than in rainy ones.

Development of a Nutrient Budget Model for Livestock Excreta Survey (가축분뇨실태조사를 위한 양분수지 산정 모델 개발)

  • Kim, Deok-Woo;Ryu, Hong-Duck;Lim, Do Young;Chung, Eu Gene;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.769-779
    • /
    • 2017
  • Nutrient (i.e., nitrogen and phosphorus) budgets are required under a 'Livestock Excreta Survey'. A nutrient budget is one of the agri-environmental indicators that calculates the difference between the inputs and outputs of the amount of nutrients within a certain boundary and for a certain time period (e.g., 1 year). In this study, a nutrients budget model was developed to effectively determine the surplus of nutrients within a region in Korea. The C# program language was used in order to facilitate the deployment of a graphical user interface (GUI) and to enhance compatibility. Also, the model was developed on Windows OS, which is the commonly used operating system in Korea. The model was based on the OECD/Eurostat nutrient budget method, and it was modified to consider manure composting procedures as well. There are key features of the nutrient budget model, including directly use of the original data sets from various input and output sources, and a collectively exchange of the address in different formats. The model can quickly show the results of various spatial and temporal resolutions with the same data, as well as perform a sensitivity analysis with coefficients and easily compareresults using tables and graphs. Further, it would be necessary to study the extension of the scope of utilization, such as the application of various nutrient budget methods. It would also be helpful to investigate both pre and postprocessing information such as linking input data through online systems.

Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea (의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Im, Jong Kwon;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

A Comparison Study of Various Water Sources for Feasibility of Expanding the use of Groundwater in Public Water Supply of South Korea (지하수 상수원 활용의 타당성 고찰을 위한 상수도 취수원의 특성 비교 연구)

  • Cha, Eun-Jee;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.60-70
    • /
    • 2017
  • As water sources become more vulnerable to the effects of climate change such as drought and contamination, the diversification of water sources is important for securing water supply. This study examines the properties of five water sources for public supply, including river and river-bed water, dams, reservoirs, and groundwater, while ensuring that the quantities available from such sources are stable and the water itself is safe for use. This study also analyzes the power, chemical, repair and maintenance, and labor costs associated with each water source. The results demonstrate that groundwater has high potential as a water source because it is readily available (about $12.89billion\;m^3/yr$), but only a small portion of it is currently used. Analyses indicated that groundwater is the most efficient source of water to meet water demand below $1,000,000m^3/yr$, which covers 62.5% of water supply facilicities. With the implementation of groundwater dams, groundwater can become cost-efficient even for larger water demand. Additionally, the water source protection areas are the smallest for groundwater among the five water sources. In conclusion, the use of groundwater as an alternative water source is feasible becasue it is readily available, safe, cost-efficient, and requires the lowest amount of environmental regulations for the diversification of water supply sources.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.