• Title/Summary/Keyword: water environment

검색결과 13,287건 처리시간 0.036초

경기북부지역 정수장 및 약수터의 미네랄 성분 분포 연구 (Mineral Components of Water Supply Plants and Spring Waters in Northern Gyeonggi Area)

  • 송희일;임한수;박경수;박현구;이현진;조미현;김영연;오조교
    • 한국환경보건학회지
    • /
    • 제45권3호
    • /
    • pp.238-246
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the distribution of mineral components, health and taste index for water supply plants, spring water located in northern Gyeonggi area and bottled waters in market to analyze Ca, K, Mg Na, Si, $F^-$ and $SO_4{^{2-}}$. Method: The samples were source and tap water in 15 water supply plants over 9 river basin, 172 spring water and 20 bottled water. The Ca, K, Mg Na and Si were analyzed by ICP-OES. The $F^-$ and $SO_4{^{2-}}$ were determined by Ion Chromatograph. Then, taste and health index were calculated using Hashimoto equation. Results: The average concentration of major minerals showed in same order of Ca > Na > Mg > K for all kinds of drinking water from water supply plants, spring waters and bottled waters. Total concentration of major minerals (Ca, K, Mg, Na) was calculated that showed 26.79 mg/L of tap water, 21.81 mg/L of spring water, 32.94 mg/L of bottled water on average. So, the spring waters indicated the lowest minerals sum. The tap water from water supply plants was categorized to Group I, II for 33.3, 44.4% according to K-index and O-index. Otherwise, spring water was classified as Group I, II for 44.0, 46.3%. Conclusion: According to the results of K and O-index, water from water supply plant showed higher K-index which means good for the health. Otherwise, spring water indicated higher O-index that people can feel more delicious than tap water. Futhermore, the mineral distribution of source water from water supply plants and spring water had indicated high correlation with geological effect.

An initial study on ecological environment changes after emergent water transportation at lower reaches of Tarim River, China based on remote sensing technique

  • Jianli, Zhang;Lin, Li;Longjiang, Du
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.313-315
    • /
    • 2003
  • Tarim River is the longest continental river in China. Its downstream ecological environment declination and valley remedy got great concern. To improve ecological environment of lower Tarim River, “Emergent water transportation project for Tarim river valley remedy” was carried out from May 2000. Water was transported five times till May 2003. Several periods MODIS image was used to monitor water body in river channel. Two periods ETM image was used to interpreter changes of environment. Area of vegetation in 1999 was similar with 2001, but become better in total. The normalized difference vegetation index (NDVI) and vegetative coverage reflected environment changed better.

  • PDF

하천 수질의 오염도평가 방법의 비교 연구 (A Comparison Study on the Method of Pollution Evaluation of Water Quality in the Stream)

  • 이호범;이중기;신대윤
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.398-403
    • /
    • 2005
  • This study is undertaken to find the optimal method to make the decision on the degree of water pollution by comparison of K-WQI, KOE-WQI that is made for index with the water quality index and water quality environment standard of the Frame Act on Environment Policy as the result of survey for water quality reality on the major point of the Yeongsan river from 2002 to 2004. The water quality of major rivers has some differences depending on seasons. however, under the water quality standard by the $BOD_5$ density, most of rivers displayed the water quality level of $II{\sim}III$ grading, and on K-WQI that is classified by indexing for 10 categories of pH, DO, $BOD_5,\;COD,\;SS,\;T-N,\;NH_3-N,\;NO_{3^-}$ N, T-P, and E-Coli and classified into 5 groups from 100 points to 40 points, they displayed the score distribution of the first grade in water quality for $85{\sim}100$ points to the second grade in water quality for $70{\sim}84$ points. On KOE-WQI that is classified by indexing for 5 categories of pH, DO, $BOD_5$, COD and T-coli and classified into 5 groups from 90 points or above for outstanding and 29 points or below for very bad, and the water quality distribution is made ranged from the first grade in water quality for 90 points or more to the third grade in water quality for $69{\sim}50$ points. In addition, for the contribution of the water quality decline, the Environmental standard has significant dependency on the $BOD_5$ density, with K-WQI contributing in various water quality decline depending on the environment around the river area of $BOD_5,\;T-N,\;NH_3-N,\;NO_3-N,\;T-P$, and E-Coli, and KOE-WQI acting os the factor contributing to lower the water quality decline by $BOD_5$, COD, and T-coli. As such, the current water quality environment standard has high dependency on $BOD_5$ and KOE-WQI excludes some nitrogen and phosphorus that considers the river environment that the grade in water quality is set by some category, and K-WQI reflected well of the ecology environment of rivers with the diversity of the assessment factor as well as to have the low dependency of specific factor to be objective.

신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로 (Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam)

  • 이새로미;박재로;황태문;안창혁
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.

중권역 대표지점의 목표수질 달성도 평가 - TOC를 중심으로 - (Evaluation of Attainment Ratio on Water Quality Goal of the Mid-watershed Representative Station)

  • 이재호;이승현;이수형;이재관
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.525-530
    • /
    • 2017
  • The attainment ratios of the water quality goals of the 114 mid-watershed representative stations, examined during the period2011 to 2015, were evaluated in the study. Of the four major river basins, the attainment ratio on water quality goal of the Geum River basin turned out to be the lowest. As a result of formal evaluation of the attainment ratios of BOD, COD and TOC, it was found that the attainment ratio of COD was much lower than that of BOD and TOC (I a circumstance thought to be caused by the higher COD/BOD and COD/TOC ratios of the water quality of the river than those of the environmental water quality standard). As well, higher COD/BOD and COD/TOC of wastewater discharged from point and non-point sources (other than those of the environmental water quality standards) might possibly represent one of the reasons. We also compared attainment ratio between the main stream and tributaries, which indicated that the higher attainment ratio was present in the main stream. The attainment ratio is also documented as more significant in the winter season than the summer season, possibly due to the contribution of non-point pollutants swept in by rain during the summer season during documented periods of high precipitation. Thus, water quality management in summer season and improvement of water quality of the tributaries might be important as a means of increasing attainment ratio on water quality goal.

경기북부지역 먹는 물 중 브롬이온 및 브롬산염의 분포특성에 관한 연구 (A Study on the Distribution Characteristics of Bromide and Bromate in Drinking Water in Northern Gyeonggi Area)

  • 정종필;최시림;류형렬;박경수;송희일;이현진;조미현;오조교;윤미혜
    • 한국환경보건학회지
    • /
    • 제44권3호
    • /
    • pp.244-249
    • /
    • 2018
  • Objectives: The purpose of this study was the investigation of bromide and bromate in drinking water of water supply plants, mineral springs and small water supply system located in northern area of Gyeonggi province. Methods: Analytical method was based on EPA 326.0 to use Postcolumn reaction (PCR). The instrument was 887 professional UV/VIS detector IC manufactured in Metrohm. Results: Bromate was detected at $0.5{\sim}2.4{\mu}g/L$ in tap water from 5 water supply plants. These plants were used as disinfection method for sodium hypochlorite and on-site chlorine that causes generate bromate as a by products even if not used ozone. Conclusions: The bromate was detected up to $2.5{\mu}g/Lin$ drinking water in northern Gyeonggi area that showed within $10{\mu}g/L$ for standard of tap water. However, the continuous monitoring of bromate is necessary in drinking water.

마을단위 소규모 하·폐수처리 공정의 효율적 유지관리를 위한 전문가 시스템에 관한 연구 (An Innovative Expert System for the Maintenance of On-site Wastewater Treatment Process for Small-scale Residential and Commercial Sites)

  • 김승준;최용수;홍석원;권기한;정익재
    • 한국물환경학회지
    • /
    • 제21권2호
    • /
    • pp.132-140
    • /
    • 2005
  • The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the process control logic, PLC system, and HMI for the process automation. In order to monitor and remote control its status, the real-time data was transferred from the on-site control center to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from pilot tests, the quality of treated wastewater with sand filtration was enough to be utilized again.

하수 염소 소독시 소독부산물 발생 특성 (Formation Characteristics of Disinfection By-Products using Chlorine Disinfection in Sewage Effluent)

  • 백영석;송민형;정경훈;권동식;이기공
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.275-280
    • /
    • 2004
  • This study was performed to investigate the disinfection efficiency and the formation characteristics of disinfection by-products(DBPs) by chlorination in the sewage effluent. The effluent was sampled from the sewage treatment plants operated in the activated sludge process and the advanced sewage process. The type of DBPs investigated were Trihalomethanes(THMs), Dichloroacetonitrile(DCAN), Chloral hydrate(CH), Dichloroacetic acid(DCAA), Trichloroacetic acid(TCAA). Major findings are as follows. First, the optimum injection concentration for chlorination in sewage effluent were found to be in the range $0.5{\sim}1.0mg\;cl_2/L$. Also, It was found that the chlorine dosage in the effluent of activated sludge process was higher than in the effluent of advanced sewage process. Second, the maximum formation concentration of THMs were $12.7{\mu}g/L$. The THMs formation reaction was finished in a short time of several seconds and chloroform was mainly formed. Also, it was found that the concentration of ammonium nitrogen is higher, the concentration of THMs is lower. Third, it was found that DCAA and TCAA were mainly formed as DBPs by disinfection.

낙동강수계 지류 수질자료를 통한 수질개선 우선순위 선정 (Priority Selection of Water Quality Improvement Through Water Quality Data of Tributaries of Nakdong River)

  • 심규현;신상민;김성민;김용석;김경훈
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.364-372
    • /
    • 2020
  • The "Master Plan for the Revitalization of Water in the Nakdong River" is designed for the fundamental improvement of water quality in the Nakdong River. The water quality and flow of the Nakdong River system tributaries was monitored in this study. Among the living environmental standard parameters of 195 rivers, BOD (Biochemical oxygen demand), T-P (Total phosphorus) and TOC (Total organic carbon) were assessed to analyze the water quality from 2012 to 2019. We examined the role of TOC. It was found that 12 rivers exceeded the water quality of the second grade (3.0 mg/L BOD standard, 0.1 mg/L T-P standard, 4.0 mg/L TOC standard) based on BOD and T-P concentrations: the Gumi stream, Gisegok stream, Yongha stream, Yongho stream, Changnyeong stream, Gajwa stream, Gwangok stream, Yeongsan stream, Toerae stream, Hwapo stream, Sangnam stream and Hogye stream. These rivers require strategies to improve the quality of the Nakdong River. Based on the ongoing project, it is possible to supplement the "Master Plan for the Revitalization of Water in the Nakdong River" and manage it after verifying it as a component of people's life and therefore used to establish water quality control measures.

낙동강에서 수질모델 실행을 위한 탈산소계수의 평가 (Estimation of CBOD Decay Rate for the Execution of Water Quality Model in the Nakdong-River Basin)

  • 유재정;윤영삼;이혜진;김문수;양상용;이영준
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.511-515
    • /
    • 2005
  • CBOD(carbonaceous BOD) decay rate was investigated for the execution of water quality model in Nakdong-Rive basin. Estimation of laboratory-derived CBOD decay rate, $k_l$ and CBOD decay rate in natural waters, $k_d$ were carried out. Hydraulic factors were applied for the calculation of $k_d$. Values of biochemical oxygen demand were investigated in Weagwan, Koreong, Jeokpo, Namgi and Mulgeom sites for the four times. The ranges of $k_l$ value were $0.04{\pm}0.01{\sim}0.14{\pm}0.03$. The values of $k_l$ in upstream sites were much larger than those in the downstream sites. The values of $k_d$ were 0.025, 0.036, 0.005 and 0.001 at Weagwan, Jeokpo, Namgi and Mulgeom, respectively, indicating that values of $k_d$ were generally larger than those of $k_l$.