• Title/Summary/Keyword: water distribution pipe system

Search Result 174, Processing Time 0.028 seconds

Initial Bacterial Groups in the Development of Biofilm in Drinking Water (수돗물속 생물막 형성의 초기 세균)

  • Lee, Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.428-433
    • /
    • 2007
  • To clarify the pioneer group in the development of biofilms in high chlorine residual water, a semi-pilot model system was operated and 16S rDNA V3 targeted PCR-DGGE was submitted. Biofilm formation occurred rapidly in the model of a drinking water distribution system. It reached $10^3\;CFU/cm^2$ or more on the surface of stainless steel, PVC, and galvanized iron in chlorinated (1.0 mg/l) water within a week. Within a week, uncultured Proteobacteria- and Bacillales group-like sequences were detected and Sphingomonas-like sequences were identified from all season and all pipe materials tested. Hence Sphingomonas species were regarded as the potential pioneer group in the development of biofilm in drinking water and this results would be useful for the prevention of biofilm formation and safety of drinking tap water.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Modeling Residual Chlorine and THMs in Water Distribution System (배급수계통에서 잔류염소 및 THMs 분포 예측에 관한 연구)

  • Ahn, Jae-Chan;Lee, Su-Won;Rho, Bang-Sik;Choi, Young-Jun;Choi, Jae-Ho;Kim, Hyo-Il;Park, Tae-Jun;Park, Chang-Min;Park, Hyeon;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.706-714
    • /
    • 2007
  • This study suggested a method for prediction of residual chlorine and THMs in water distribution system by measurement of residual chlorine, THMs, and other parameters, estimation of chlorine decay coefficients and THM formation coefficients, and simulation of water qualities using pipe network analysis. Bulk decay coefficients of parallel first-order were obtained by bottle tests, and pipe wall decay coefficients of first-order were estimated through evaluation of 5 models, which showed the lowest values of 0.03 for MAE(mean absolute error) and 0.037 MAE in comparison with the observed in field. And bottle tests were conducted to model first-order reaction of THM formation by nonlinear least square regression and the resultant coefficients were compared with the observed in field. As a result, the coefficients of determination$(R^2)$ for the observed and the predicted values were 0.98 in September and 0.82 in November, and the formation of THMs was predicted by modeling.

Study on the Development of Optimal Heat Supply Control Algorithm in Group Energy Apartment Building According to the Variation of Outdoor Air Temperature (외기온도 변화에 따른 집단에너지 공동주택의 최적 열공급제어 알고리즘 개발에 관한 연구)

  • Byun, Jae-Ki;Lee, Kyu-Ho;Cho, Young-Don;Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • In the present study, optimal heat supply algorithm which minimize the heat loss through the distribution pipe line in group energy apartment was developed. Variation of heating load of group energy apartment building in accord with the outdoor air temperature was predicted by the heating load-outdoor temperature correlation. Supply water temperature and mass flow rate were controlled to minimize the heat loss through distribution pipe line. District heating apartment building located in Hwaseong city, which has 1,473 households, was selected as the object building for testing the present heat supply a1gorithm. Compared to the previous heat supply system, 10.4% heat loss reduction can be accomplished by employing the present method.

Study on the Development of Multi Heat Supply Control Algorithm in Apartment Building of District Heating Energy (지역난방 에너지 공동주택의 다중 열공급 제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, J.K.;Choi, Y.D.;Park, M.H.;Shin, J.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.

CLPP of Biofilm on Different Pipe Materials in Drinking Water Distribution System (수돗물속에서 관재질에 따른 생물막의 CLPP)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.891-894
    • /
    • 2004
  • The effect of pipe materials on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Heterotrophic bacterial concentrations were $10^4\;-\;10^6\;CFU/cm^2$ and there was no differences between galvanized iron and carbon steel. Average optical density of Biolog plate was similar between two pipe materials. However, CLPP was different according to the type of pipe materials and exposed times to tap water, and CLPP was independent of bacterial concentration. This represents the differences of bacterial communities with pipes and water contact times.

The Effects of pH and Alkalinity Adjustment on Internal Corrosion Control and Water Quality in Drinking Water Pipelines (정수의 pH 및 알칼리도 동시 조절이 상수도관의 내부부식 제어 및 수질에 미치는 영향)

  • Lee, Hyun-Dong;Jung, Hae-Ryong;Kwak, Phill-Jae;Chung, Won-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.661-669
    • /
    • 2000
  • This research was carried out to evaluate effect of metallic release and change of water corrosive indices by the pH and alkalinity adjustment using the SDLS (Simulated Distribution Loop System) which consist of six types of pipe loop with DCIP, PVC, PE, STS304, CP, GSP, respectively, and its effects on water quality changes which were microbes quality(SPC), residual chlorine. THMs and other parameters. And it was to propose optimal criteria of water quality control for the field application. According to the results, water control system by pH and alkalinity adjustment showed the changing of corrosive water and reducing of metallic release rate and it was not affects of THMs formation, microbes regrowth and variation of other parameters. Water quality stability and corrosion control were due to calcium carbonate precipitation film formation of pipe inner by water quality control. Therefore, corrosive water control system by pH and alkalinity adjustment can be attributed to effective water quality management in water distribution system according to water quality stability of pH and TIC(Total Inorganic Carbonate concentration) that affect the precipitation and dissolution of solids.

  • PDF

A Numerical Method to Calculate Drainage Time in Large Transmission Pipelines Filter (대구경 관로의 배수시간 산정을 위한 수치해석 기법)

  • Shin, Byoung-Ho;Choi, Doo-Yong;Jeong, Kwansue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.511-519
    • /
    • 2017
  • Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model's applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.