• 제목/요약/키워드: water distribution model

검색결과 1,394건 처리시간 0.033초

DEM numerical study on mechanical behaviour of coal with different water distribution models

  • Tan, Lihai;Cai, Xin;Ren, Ting;Yang, Xiaohan;Rui, Yichao
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.523-538
    • /
    • 2021
  • The mechanical behaviour and stability of coal mining engineering underground is significantly affected by ground water. In this study, nuclear magnetic resonance imaging (NMRI) technique was employed to determine the water distribution characteristics in coal specimens during saturation process, based on which the functional rule for water distribution was proposed. Then, using discrete element method (DEM), an innovative numerical modelling method was developed to simulate water-weakening effect on coal behaviour considering moisture content and water distribution. Three water distribution numerical models, namely surface-wetting model, core-wetting model and uniform-wetting model, were established to explore the water distribution influences. The feasibility and validity of the surface-wetting model were further demonstrated by comparing the simulation results with laboratory results. The investigation reveals that coal mechanical properties are affected by both water saturation coefficient and water distribution condition. For all water distribution models, micro-cracks always initiate and nucleate in the water-rich area and thus lead to distinct macro fracture characteristics. With the increase of water saturation coefficient, the failure of coal tends to be less violent with less cracks and ejected fragments. In addition, the core-wetting specimen is more sensitive to water than specimens with other water distribution models.

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

선형계획법을 이용한 분기형 관망 시스템의 최적설계 (Optimal Design of Dendritic Water Distribution Systems Using Linear Prograning)

  • 전환돈;김태균
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.135-143
    • /
    • 1994
  • 본 논문에서는 분기형 관수로 설계방법의 모델을 제시하기 위하여 선형계획법(LP)을 도입한 설계를 연구하였다. 실제 사업지구인 전남해남군 간척사업지구의 자료를 토대로 LP 수식화에 필요한 자료를 수집하여 파이프 관경과 펌프마력설계를 최적화하였다. 연구결과 기존의 관망설계와 비교해 보았을 때 파이프 관경과 펌프마력등에서 더 경제적인 결과를 얻을 수 있었고, 수리모의모형을 사용한 기존의 설계방법보다 객관적이고 효율적인 설계가 가능했다. 이러한 결과를 바탕으로 본 논문에서 연구된 선형계획법을 이용한 분기형 관망설게의 모형이 실무에서도 효율적으로 적용될 수 있음을 알 수 있었다.

  • PDF

혼합모형을 이용한 생수소비 분포의 근사화에 대한 소고(小考) (A Note on Approximation of Bottled Water Consumption Distribution: A Mixture Model)

  • 유승훈
    • 자원ㆍ환경경제연구
    • /
    • 제11권2호
    • /
    • pp.321-333
    • /
    • 2002
  • Approximating bottled water consumption distribution is complicated by zero observations in the sample. To deal with the zero observations, a mixture model of bottled water consumption distributions is proposed and applied to allow a point mass at zero. The bottled water consumption distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household bottled water consumption survey data. The mixture model can easily capture the common bimodality feature of the bottled water consumption distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-consumption significantly varies with some variables.

  • PDF

급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究) (A Study on Daily Water Demand Prediction Model)

  • 구자용;소천명;이나카주 토요노
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

모세관 모델을 이용한 불포화토양의 물-가스 접촉면적 및 가스공극 크기분포의 계산 및 검증 (Capillary Bundle Model for the Estimation of Air-water Interfacial Area and the Gas-filled Pore Size Distribution in Unsaturated Soil)

  • 김헌기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Air-water interfacial area is of great importance for the analysis of contaminant mass transfer processes occurring in the soil systems. Capillary bundle model has been proposed to estimate the specific air-water interfacial areas in unsaturated soils. In this study, the measured air-water interfacial areas of a soil (loam) using the gaseous interfacial tracer technique were compared to those from capillary bundle model. The measured values converged to the specific solid surface area (7.6×104 ㎠/㎤) of the soil. However, the simulated air-water interfacial areas based on the capillary bundle model deviated significantly from those measured. The simulated values were substantially over-estimated at low end of the water content range, whereas the model under-estimated the air-water interfacial area for the most of the water content range. This under-estimation is considered to be caused by the nature of the capillary bundle model that replaces the soil pores with a bundle of glass capillaries and thus no surface roughness at the inner surface of the capillaries is taken into account for the estimation of the air-water interfacial area with the capillary bundle model. Subsequently, appropriate correction is necessary for the capillary bundle model to estimate the air-water interfacial area in soils. Since the soil-moisture release curve data is the basis of the capillary bundle model, the model can be of use due to its simplicity, while the gaseous tracer technique requires complicated experimental equipment followed by moment analysis of the breakthrough curves. The size distribution profile of the pores filled with gas estimated by the water retention curve was found to be similar to that of particle size at different size range. The shifted distribution of gas-filled pores toward smaller size side compared to the particle size distribution was also found.

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

다단계 반복기법을 이용한 관로시스템의 최적관경 결정 (determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system)

  • 한건연;박재홍
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.327-335
    • /
    • 1998
  • 상수관망은 상수공급시스템에서 핵심적인 부분이다. 주어진 상수공급시스템에서 배수관망에 대한 비용은 사업전체 비용에 대한 대부분을 차지하고 있다. 관망에 대한 설계과정 중에서 최적화기법을 사용하여 비용을 절감하기 위한 연구가 시도되었다. 주어진 상수관망 시스템의 설계시 고려되는 관경의 결정을 위해 유량해석과 최적화 기법이 연계되어 해석하는 반복기법이 적용되었다. 유량해석을 위해서 선형화기법이 되입되었고 관경의 최적화를 위해서 선형계획법에 기초한 개정 단체법을 이용하였다. 22개 관로와 35개 관로를 가진 실제관망에 본 모형을 적용한 결과 짧은 계산시간으로 최적화된 상용관을 결정할 수 있었다.

  • PDF

부정류 흐름에서 상수관망 수질해석을 위한 동역학적 모형의 개발 (Development of a Dynamic Model for Water Quality Simulation during Unsteady Flow in Water Distribution Networks)

  • 최두용;조원철;김도환;배철호
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.609-617
    • /
    • 2012
  • A dynamic water quality model is presented in order to simulate water quality under slowly varying flow conditions over time. To improve numerical accuracy, the proposed model uses a lumped system approach instead of extended period simulation, unlike the other available models. This approach can achieve computational efficiency by assuming liquid and pipe walls to be rigid, unlike the method of characteristics, which has been successfully implemented in rapidly varying flows. The discrete volume method is applied to resolve the advection and reaction terms of the transport equation for water quality constituents in pipes. Numerical applications are implemented to the pipe network examples under steady and unsteady conditions as well as hydraulic and water quality simulations. The numerical results are compared with EPANET2, which is a widely used simulation model for a water distribution system. The model results are in good agreement with EPANET2 for steady-state simulation. However, the hydraulic simulation results under unsteady flows differ from those of EPANET2, which causes a deviation in water quality prediction. The proposed model is expected to be a component of an integrated operation model for a water distribution system if it is combined with a computational model for rapidly varying flows to estimate leakage, pipe roughness, and intensive water quality.

A Decision-Supporting Model for Rehabilitation of Old Water Distribution Systems

  • Kim, Joong-Hoon;Geem, Zong-Woo;Lee, Hyun-dong;Kim, Seong-Han
    • Korean Journal of Hydrosciences
    • /
    • 제8권
    • /
    • pp.31-40
    • /
    • 1997
  • Flow carrying capacity of water distribution systems is getting reduced by deterioration of pipes in the systems. The objective of this paper is to present a managerial decision-making model for the rehabilitation of water distribution systems with a mininum cost. The decisions made by the model also satisfy the requirements for discharge and pressure at demanding nodes in the systems. Replacement cost, pipe break repair cost, and pumping cost are considered in the economic evaluation of the decision along with the break rate and the interest rate to determine the optimal replacement time for each pipe. Then, the hydraulic integrity of the water distribution system is checked for the decision by a pipe network simulator, KYPIPE, if discharge and pressure requirements are satisfied. In case the system does not satisfy the hydraulic requirements, the decision made for the optimal replacement time is revised until the requirments are satisfied. The model is well applied to an existing water distribution system, the Seoul Metropolitan Water Supply System (1st Phase). The results show that the decisions for the replacement time determined by the economic analysis are accepted as optimal and hydraulic integrity of the system is in good condition.

  • PDF