• Title/Summary/Keyword: water cycle management

Search Result 291, Processing Time 0.028 seconds

A Study to Develop Monthly Cover Management Factor Database for Monthly Soil Loss Estimation (월단위 토양유실가능추정치를 위한 지표피복인자의 산정 방안 연구)

  • Sung, Yun Soo;Jung, Yunghun;Lim, Kyoung Jae;Kim, Jonggun;Kim, Ki-Sung;Park, Seung Ki;Shin, Min Hwan;Kum, Dong Hyuk;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • Soil loss is an accompanying phenomenon of hydrologic cycle in watersheds. Both rainfall drops and runoff lead to soil particle detachment, the detached soil particles are transported into streams by runoff. Here, a sediment-laden water problem can be issued if soil particles are severely detached and transported into stream in the watershed. There is a need to estimate or simulate soil erosion in watersheds so that an adequate plan to manage soil erosion can be established. Universal Soil Loss Equation (USLE), therefore, was developed and modified by many researchers for their watersheds, moreover the simple model, USLE, has been employed in many hydrologic models for soil erosion simulations. While the USLE has been applied even in South-Korea, the model is often regarded as being limited in applications for the watersheds in South-Korea since monthly conditions against soil erosion on soil surface are not capable to represent. Thus, the monthly USLE factors against soil erosion, soil erodibility and crop management factors, were established for four major watersheds, which are Daecheong-dam, Soyang-dam, Juam-dam, and Imha-dam watersheds. The monthly factors were established by recent fifteen years from 2000 to 2015. Five crops were selected for the monthly crop management factor establishments. Soil loss estimations with the modified factors were compared to conventional approach that is average annual estimations. The differences ranged from 9.3 % (Juam-dam watershed) to 28.1 % (Daecheong-dam watershed), since the conventional approaches were not capable of seasonally and regionally different conditions.

Effects of Water Temperature on Oxygen Consumption in Starry Flounder Platichthys stellatus Reared in Seawater and Freshwater (해수 및 담수사육 강도다리 Platichthys stellatus의 산소소비에 미치는 수온의 영향)

  • Jeong, Min-Hwan;Byun, Soon-Gyu;Lim, Han-Kyu;Min, Byung-Hwa;Kim, Young-Soo;Chang, Young-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.285-291
    • /
    • 2009
  • The effects of water temperature on oxygen consumption (OC) of starry flounder Platichthys stellatus reared in seawater (SW) and freshwater (FW) was performed in closed water-recirculating system containing respiratory chamber. Fish acclimated in separate indoor tanks with SW (nine of fish used, $263.0{\pm}40.4$ g) or FW (nine of fish used, $265.8{\pm}34.8$ g) were sampled. The OC of starry flounder at $15^{\circ}C,\;20^{\circ}C$ and $25^{\circ}C$ were $74.4{\pm}17.0,\;85.9{\pm}15.8,\;98.3{\pm}11.4\;mg\;O_2\;kg^{-1}hr^{-1}$ in SW and $46.7{\pm}12.0,\;63.3{\pm}7.5,\;82.6{\pm}5.3\;mg\;O_2\;kg^{-1}hr^{-1}$ in FW, respectively, showing a linear increase in OC with water temperature. The OC of fish reared in both SW and FW clear diel rhythm, with lower values at daytime and higher values in the night, in accordance with light (09:00~21:00 hr) and dark (21:00~09:00 hr) phases of the diel cycle (12L : 12D) in water temperature at $15^{\circ}C$ and $20^{\circ}C$. However OC of fish reared in both SW and FW showed unclear diel rhythm with light and dark phases of the diel cycle in water temperature at $25^{\circ}C$. Starry flounder reared in FW had higher ventilation rates than those in SW, but SW had higher OC per breath than those in FW.

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF

Listeria Species in Broiler Poultry Farms: Potential Public Health Hazards

  • Dahshan, Hesham;Merwad, Abdallah Mohamed Amin;Mohamed, Taisir Saber
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1551-1556
    • /
    • 2016
  • Broiler meat production worldwide has been plagued by lethal food-poisoning bacteria diseases, including listeriosis. A fatality rate of 15.6% was recorded in human beings in the EU in 2015. During 2013, a total of 200 poultry farm samples, including litter, chicken breast, farm feed, and drinking water, were collected to generate baseline data for the characterization of the genus Listeria in broiler poultry farms. Listeria spp. were detected in a total of 95 (47.5%) poultry farm samples. The isolates of Listeria spp. included L. innocua (28.5%), L. ivanovii (12.5%), L. welshimeri (4.5%), and L. monocytogenes and L. seeligeri (1% each). Listeria spp. contamination rates were higher in farm feed (70%), followed by litter (52.5%), chicken breasts (42.2%), and drinking water (10%). Almost all Listeria spp. isolates were resistant to more than three classes of antibiotics (multidrug resistant). Besides this, we observed a significant resistance level to penicillin and fluoroquinolone drugs. However, lower resistance levels were recorded for broad-spectrum cephalosporins. The inlA, inlC, and inlJ virulence genes were detected in almost all of the L. monocytogenes isolates. Thus, food safety management approaches and interventions at all stages of the broiler rearing cycle were needed to control cross-contamination and the zoonotic potential of listeriosis.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

A Study on Development of Performance Evaluation Model for Life-Cycle Management of River Facilities (하천시설 생애주기관리를 위한 배수통문 성능평가모델 개발)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.420-420
    • /
    • 2018
  • 하천법에서 정의하고 있는 하천시설은 시설은 제방과 수문을 포함하여 20여종에 달한다. 이 중 하천유지 보수 매뉴얼(국토교통부, 2016)에서 정한 유지관리 대상은 총 14종이며, 국가 및 지방하천 정비와 유지관리에 4대강살리기사업 완료 시점인 2012년 이후 연간 약 1.3조원의 예산을 투입하고 있다. 연간 막대한 예산이 투입되어 관리되고 있는 하천관리의 효율성을 제고하기 위해 하천시설에 대한 생애주기관리기법적용 연구가 진행 중이며 이를 위해서는 하천시설의 성능에 대한 정확한 평가가 선행되어야 한다. 본 연구에서는 배수통문에 대한 성능평가모델을 산정하는 방법을 제시하였다. 우선적으로 배수통문의 설치년도와 시설물안전등급을 조사하고 등급별 평균사용연수를 산정하고 시설물 성능예측 기본식의 계수를 산정하여 성능평가모델 산정식을 도출하였다. 배수통문 성능평가모델 산정식과 등급별 평균 사용연수를 비교하여 산정식의 적용성을 검증하였다. 본 연구를 통해 하천시설의 사용연수에 따른 성능을 개략적으로 예측하여 유지관리예산 투입의 우선 순위를 결정하는데 기초자료로 활용이 가능하다고 판단된다.

  • PDF

Estimation of Soil Organic Carbon Stock in South Korea

  • Thi, Tuyet-May Do;Le, Xuan-Hien;Van, Linh Nguyen;Yeon, Minho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.159-159
    • /
    • 2022
  • Soil represents a substantial component within the global carbon cycle and small changes in the SOC stock may result in large changes of atmospheric CO2 particularly over tens to hundreds of years. In this study, we aim to (i) evaluate the SOC stock in the topsoil 0 - 15 cm from soil physical and chemical characteristics and (ii) find the correlation of SOC and soil organic matter (SOM) for national-scale in South Korea. First of all, based on the characteristics of the soil to calculate the soil hydraulic properties, SOC stock is the SOC mass per unit area for a given depth. It depends on bulk density (BD-g/cm3), SOC content (%), the depth of topsoil (cm), and gravel content (%). Due to insufficient data on BD observation, we establish a correlation between BD and SOC content, sand content, clay content parameter. Next, we present linear and non-linear regression models of BD and the interrelationship between SOC and SOM using a linear regression model and determine the conversion factor for them, comparing with Van Bemmelen 1890's factor value for the country scale. The results obtained, helps managers come up with suitable solutions to conserve land resources.

  • PDF

Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (II) Drought (원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가: (II) 가뭄)

  • Shin, Yongchul;Choi, Kyung-Sook;Jung, Younghun;Yang, Jae E.;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • Based on the soil moisture data assimilation suggested in the first paper (I), we estimated root zone soil moisture and evaluated drought severity using remotely sensed (RS) data. We tested the impacts of various spatial resolutions on soil moisture variations, and the model outputs showed that resolutions of more than 2-3 km resulted in over-/under-estimation of soil moisture values. Thus, we derived the 2 km resolution-scaled soil moisture dynamics and assessed the drought severity at the study sites (Chungmi-cheon sites 1 and 2) based on the estimated soil/root parameters and weather forcings. The drought indices at the sites were affected mainly by precipitation during the spring season, while both the precipitation and land surface characteristics influence the spatial distribution of drought during the rainy season. Also, the drought severity showed a periodic cycle, but additional research on drought cycles should be conducted using long-term historical data. Our proposed approach enabled estimation of daily root zone soil moisture dynamics and evaluation of drought severity at various spatial scales using MODIS data. Thus, this approach will facilitate efficient management of water resources.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

A Study on Optimization of The Concentration of Cutting Oil to be used for Cutting (절삭가공(切削加工)에 사용(使用)되는 절삭유(切削油)의 농도최적화(濃度最適化)에 관(關)한 연구(硏究))

  • Kim, Gue-Tae;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.95-102
    • /
    • 2013
  • It is indispensable to modern society metal processing since the industrialized rapidly, but it is a metalworking cutting fluid immediately. In addition, this means selecting a emulsion on the basis of quality criteria processing method, the material of the material, cutting depth, cutting speed, Djourou fence Liang, and surface roughness, cutting oil, the shape of the device based on the emulsion, I will be the structure of the tank, filtration equipment also changes. In particular, acting bacteria is now breeding in response to the passage of time due to metal ion degradation due to heat generated hydraulic fluid leakage, humidity tung, during processing, seep from processing material at the time of processing the water-soluble cutting oil for generating the malodor by dropping significantly the performance of the cutting oil to corruption from, sometimes by introducing various additives to suppress spoilage in advance. In this study, we expect the effect of the cost reduction in the extension of fluid replacement cycle through the application of the management apparatus and deep understanding in the management of cutting fluid, the working environment through the understanding and interest of workers in the production site more than anything I try to become useful for the improvement.