• 제목/요약/키워드: water curing

검색결과 936건 처리시간 0.025초

개질유황 모르타르의 양생조건에 따른 모르타르의 강도특성 (Strength Properties of the Mortar According to the Curing Condition of the Modified Sulfur Mortar)

  • 정병열;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.332-333
    • /
    • 2013
  • This research utilizes the modified sulfur having the low melting point which 65℃ is tries to study the strength property of the mortar according to the cure method of the modified sulfur mortar. And we try to use as basic data for investigating the curing condition of the light panel optimum utilizing the modified sulfur. We experimented by five kinds; 20℃ water curing method and 20, 40, 60, 80(℃) air dry curing method. In 3 day curing, the compressive strength was improved caused by high curing temperature. But the compressive strength was degraded caused by enhanced temperature in 7day curing and 28day curing. Therefore, the curing temperature of the modified sulfur mortar is determined that it comes 20 time case curing and the water curing is the most recommendable.

  • PDF

발수가공 데이터의 분산분석 (ANOVA for Water Repellent Finish data)

  • 윤중범
    • 품질경영학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 1988
  • Most of silicone used for water repellent finish is MHP (methyl hydrodiene polysiloxane), which is formed by hydrolysis and condensation polymerization of MHD (methyl hydrodiene dichlorosilane: Me H Si $Cl_2$). The cross-linking theory explains the water repellent mechanism of MHP. The silicone finish on fiber could improve in handle, softness, abrasion resistance, soil repellency, tear strength and crease resistance, as well as water repellency. According to using method silicone-water repellent finishing agents, could be devided into air dry type and curing type. MHP is the typical curing type of water repellent finishing agent, and this type requires the curing temperature above $150^{\circ}C$ at least. High curing temperature is the very drawback of this curing type. For this reason, there has been global interest in the lowering of its temperature. The objective of this study is to investigate merits of alkali treatment for silicone finishing by ANOVA and LSD (least significant difference).

  • PDF

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

의치상용 자가중합레진의 중합조건에 따른 파괴인성 (FRACTURE TOUGHNESS OF SELF-CURING DENTURE BASE RESINS WITH DIFFERENT POLYMERIZING CONDITIONS)

  • 정수양;김지혜;양병덕;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.52-60
    • /
    • 2005
  • Purpose. The intent of this study was to evaluate the effects of curing conditions on self-curing denture base resins to find out proper condition in self-curing resin polymerization. Materials and methods, In this study, 3 commercial self-curing denture base resins are used Vertex SC, Tokuso Rebase and Jet Denture Repair Acrylic. After mixing the self curing resin, it was placed in a stainless steel mold(3$\times$6$\times$60mm). The mold containing the resin was placed under the following conditions: in air at 23$^{\circ}C$; or in water at 23$^{\circ}C$; or in water at 23$^{\circ}C$ under pressure(20psi); or in water at 37$^{\circ}C$ under pressure(20psi) or in water at 50$^{\circ}C$ under pressure(20psi) , or in water at 65$^{\circ}C$ under pressure(20psi), respectively. Also heat-curing denture base resin is polymerized according to manufactures' instructions as control. Fracture toughness was measured by a single edge notched beam(SENB) method. Notch about 3mm deep was carved at the center of the long axis of the specimen using a dental diamond disk driven by a dental micro engine. The flexural test was carried out at a crosshead speed 0.5mm/min and fracture surface were observed under measuring microscope. Results and conclusion . The results obtained were summarized as follows : 1. The fracture toughness value of self-curing denture base resins were relatively lower than that of heat-curing denture base resin. 2. In Vertex SC and Jet Denture Repair Acrylic, higher fracture toughness value was observed in the curing environment with pressure but in Tokuso Rebase, low fracture toughness value was observed but there was no statistical difference. 3. Higher fracture toughness value was observed in the curing environment with water than air but there was no statistical difference. 4. Raising the temperature in water showed the increase of fracture toughness.

수종 레진으로 의치상 조직면 개조시 의치상의 크기변화와 물리적 성질 및 표면상태 비교 연구 (AN EXPERIMENTAL STUDY ON THE DIMENSIONAL CHANGES OF RELINED DENTURES AND MECHANICAL PROPERTIES AND SURFACE TEXTURES OF SEVERAL RESINS USED IN DENTURE RELINING)

  • 이창한;김영수
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.25-41
    • /
    • 1990
  • The purpose of this study was to evaluate and compare the dimensional changes of relined dentures with a light-curing resin, a heat-curing resin, and a direct, hard reline resin. And also to measure the transverse strength, impact strength, surface hardness of the three resins used in relining. The surface textures of three resins also of evaluated by using scanning electron microscope. Through analyses on the data from this study, the following conclusions were obtained. 1. Impact strength of heat-curing resin was highest, and direct, hard reline resin higher, light-curing resin lowest. 2. Transverse strength of heat-curing resin was highest, and direct, hard reline resin and light-curing resin was lower and not signiicantly different. 3. Surface hardness of light-curing resin was lighest, heat-curing resin higher, and direct, hard reline resin was lowest. 4. After storage of the relined dentures for 1 day and 1 week in water at room temperature, linear shrinkage of distance between the reference points in the maxillary base relined with direct, hard reline resin was lowest, and those relined with light-curing resin and heat-curing resin were lower and were not significantly different. 5. After storage for 4 weeks in orator at room tempeature, linear shrinkage of distance between ridge crests of dentures relined with heat-curing resin was highest and that of distance between denture borders was not significantly different. 6. The dimensional changes of relined dentures during storage in water was not significant except those of distance between denture borders relined with light-curing resin at 1 day and 1 week storage in water. 7. At low magnification (x40) of SEM examination, the surface textures of three resins were similar except light-curing resin which had some defects. At high magnification (x200), the surface textures of hard, direct reline resin were smooth with little defects, but those of heat-curing resin and light-curing resin w ere irregular.

  • PDF

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • 제6권6호
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

팽창재량 및 양생방법에 따른 시멘트 모르터의 특성에 관한 연구 (A Study on the Properties of Cement Mortar with the Content of Expansive Additives Under Various Curing Method)

  • 한성수;김정진;김효구;홍상희;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.181-186
    • /
    • 1999
  • When the expansive additives are used in concrete to reduce the shrinkage cracking, it shows variable properties with the curing method and curing temperature. Therefore, in this study, the experiments are perfomed to present the expansion of cement mortar by varying the unit additions of expansive additives and the curing method. According to the test results, the order of expansion by curing method, which is caused by hydration heat of cement, is follows ; curing at water > curing at air after curing at water for 7 days > curing at air. Cement mortar using expansive additives shows that high expansion is place with rise of temperature.

  • PDF

양생방법에 따른 콘크리트의 역학적 특성에 관한 실험적 연구 (The Experimental Study of Characteristics of Concrete Strength according to the pattern of curing)

  • 이준구;윤상대;박광수;최광선;김명원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.695-702
    • /
    • 1998
  • The purpose of this study is to investigate the mechanical properties of precast concrete cured by accelerated curing methods such as, steam curing method and warm water curing method varing maximum temperature of curing along to the period of curing. Some specimens are cured by accelerated curing method(warm water curing method) and then deposited in the storehouse. The others are deposited in the storehouse directly. All of these are cured until being tested to compare these two group's mechanical characteristics for each period 3days, 7days, 28days. The goal of this comparison is to estimate the efficiency of accelerated curing method in the case of precast concrete stocked in the field or warehouse for a long term and to make guide line for factory manager to make a economical products of concrete of a good quality. We can conclude some guide lines 1) It is not efficient to cure concrete with accelerated method at higher than 80℃. 2) The continuing of curing period more than 36hr makes damage to concrete in using accelerated curing method. 3) The strength revelation of concrete cured by accelerated curing methods, added rice husk ash more delayed than OPC concrete done but the strength of maximum value is higher than OPC concrete. 4) It is not efficient to use accelerated curing method in the case of storing the products for more than 7days in the aspect of mechanical properties.

  • PDF

촉진양생이 콘크리트의 수화 및 압축강도에 미치는 영향에 관한 연구 (A Study on the effect of Accelerated Curing on Hydration and Compressive Strength of Concrete)

  • 김생빈;유승룡;김동신;최세규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.107-111
    • /
    • 1996
  • The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 days of water curing may be as follwings; the presteaming period does not affect seriously and less than $30^{\circ}C$/hr-the rate of temperature rise and less than $82^{\circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

  • PDF

플라이애쉬 혼입량 및 양생방법이 콘크리트의 강도발현에 미치는 영향 (The Effect of Flyash Content and Curing Condition on Strength Development of Flyash Concrete)

  • 이진용;배성용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.118-123
    • /
    • 1997
  • The strength development of Flyash concrete containing various amount of Flyash (0, 10, 30, 50%) using as a cement replacement material was investigated two types of curing conditions, namely water curing at $21^{\cire}C$ and steam curing at $25^{\cire}C$ were adopted for this work, in water curing the strength development of Flyash concrete was always inferior to that of OPC (Ordinary Portland Cement) concrete at early ages, although the differences were dependant up percentage of Flyash. The strength of Flyash concrete based on equivalent strength development at 28 days was also tested and the results exhibited that the strength was improved at early days, specially, the concrete containing 30% of Flyash, in steam curing for the same mix(270kg/$\textrm{cm}^2$) the strength of Flyash concrete similar to that of OPC concrete, in other words. Flyash was strongly influenced by curing temperature in the strength development.

  • PDF