• Title/Summary/Keyword: water contact angle

Search Result 697, Processing Time 0.028 seconds

접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제2보) -자동 접촉각 측정 시스템의 신뢰성 및 재현성 - (Development of a Novel System for Measuring Sizing Degree Based on Contact Angle (II) - Reliability and Reproducibility of the New Automatic Measuring System for Contact Angle -)

  • 이찬용;김철환;최경민;박종열;권오철
    • 펄프종이기술
    • /
    • 제35권3호
    • /
    • pp.53-58
    • /
    • 2003
  • The newly developed system for measuring a contact angle on a sheet was examined to investigate reliability and reproducibility of the measured results. It was clearly confirmed that the automatic contact angle measuring system was much faster and more reliable way to determine the water resistance of a sheet, comparing with Cobb and Stockigt sizing tests. Cobb test showed less significant results with stringently sized sheets, and Stockigt test exhibited the big deviations by discrepancy of the recognition point of coloring according to different testers in spite of explicit test results. On the other hand, the contact angles measured by the automatic system were reproduced with less deviations, irrespectively of different testers. It was interesting to note that the contact angle might be able to used to predict Cobb and Stockigt sizing degree, based upon the high correlation coefficients of 0.95 and 0.97. Hereafter the automatic system will be upgraded to predict Cobb and stockigt sizing degree through the measurement of contact angle.

다양한 습윤성 표면 위에서의 액적 증발 (Droplet Evaporation on Surf aces of Various Wettabilities)

  • 송현수;이용구;진송완;김호영;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

태양광 모듈 오염 방지를 위한 발수 코팅 물질에 대한 연구 (Research on Water-Repellent Coating Materials to Prevent Solar Module Pollution )

  • 박영아;정다연;기현철
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.182-187
    • /
    • 2024
  • Currently, the most developed new energy source is solar energy. Because solar power is installed outside, it is exposed to many pollutants. Pollutants are causing the characteristics of solar energy to deteriorate. Therefore, this study aims to develop a water-repellent coating to prevent contamination of solar modules. Silica and Titania materials are mainly used as water-repellent coating materials. In this study, it was based on silica and the contact angle characteristics were measured according to the change in the amount of silica and ammonia water added and the number of coatings. As a result of the measurement, it was confirmed that the contact angle was more than 60 degrees when 0.5 mol of TEOS was added to 50 mL and 0.15 M when 1 mL of ammonia water was added to 296.47 ml of distilled water. And it was confirmed that the contact angle improved when the number of coatings was applied twice. A water-repellent coating material was applied to low iron tempered glass used to protect dye-sensitized solar cell modules. The characteristics of the module were measured after spraying DI-Water on low-emission tempered glass with a water-repellent coating. As a result of the measurement, the efficiency of the module without application, the efficiency of the module coated once, and the module coated twice were 4.87%, 4.90%, and 4.91%, respectively. It was confirmed that the efficiency of the module increased by applying water-repellent coating. As a result of this study, it is determined that the water-repellent coating material will help improve solar power generation efficiency and lifespan by being self-cleaning and non-reflective.

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구 (A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface)

  • 김태완
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

DMDHEU/FC 일욕가공된 면/폴리에스테르 혼방직물의 DP성 및 발수성 (Durable Press Performance and Water Repellency of Cotton/Polyester Fabrics Finished by BMDHEU/Fluorochemicals)

  • 권영아
    • 한국염색가공학회지
    • /
    • 제10권5호
    • /
    • pp.24-31
    • /
    • 1998
  • The effects of DMDHEU alone and DMDHEU/Fluorochemical(FC) combined treatment on the physical properties of 75%/25% cotton/polyester(CP) blended fabrics were investigated. FC water repellent and DMDHEU durable press finishes were applied in combination to CP fabrics to provide good water repellency as well as great durable press(DP) performance. The physical properties of the fabrics were evaluated by wrinkle recovery angle(WRA), DP performance, contact angle, demand wettability, and water repellency. The durable press/water repellent finished(DP/WR) CP fabrics show considerably improved WRA and DP performance. The DP/WR finishes do not change the water contact angie of polyester fibers significantly, while the DP finishes increase it. Both DP and DP/WR finishes increase the contact angle of cotton fibers. The water uptake amount increases in the following order : DP/WR cotton, DP/WR CP<DP cotton, DP CP < Control CP, Control cotton. The water uptake amount increases in the following order DP/WR CP, DP/WR cotton <DP cotton <DP CP<Control CP, Control cotton. Considerable improvements for water repellency are imparted to the CP fabrics treated with DP/WR, and the level of improvement is not significantly different from that of the DP/WR cotton fabrics. These results lead to the conclusion that DP/YVR treatments a single pad bath on CP are effective finishes for improving both DP performance and water repellency.

  • PDF

발수발유 가공처리가 폴리에스테르 직물의 표면 특성에 미치는 영향 (The Effects of Water-and Oil-Repellent Finishes on the Surface Characteristics of Polyester Fabrics)

  • 하희정
    • 대한가정학회지
    • /
    • 제35권3호
    • /
    • pp.275-286
    • /
    • 1997
  • The effects of water-and oil-repellent finishes on the surface characteristics of polyester fabrics were investigated in this study. Three kinds of fluoropolyment were selected as water=and oil-repellent finishing agents. The effects of water-and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respects to crease resistance, contact angle and wicking time. The results of this study were as follows: 1. The polyester fabrics treated with fluoropolymers showed much higher water repellency and oil repellency than those of untreated polyester fabrics. Water-and oil-repellency of fabrics were increased with the crystallinity and the hydrophobic-hydrophillic components of fluoropolymers. 2. Water repellency of fabrics treated with fluoropolymer with hydrophobic components was the highest. Oil repellency of fabrics treated with fluoropolymer with high crystallinity was the highest. Water-and oil-repellency of fabrics treated with fluoropolymer with hydrophyllic components was low comparatively. 3. The crease resistance of polyester fabrics treated with fluoropolymer nearly approached to that of untreated polyester fabric. 4. The water-and oil-repellent finishes improved contact angle markedly. Especially the contact angle of ployester fabric treated with fluropolymer with hydrophobic component was the biggest. 5. The wicking time of polyester fabric treated with fluropolymer with hydrophobic component was the longest.

  • PDF

컴퓨터 영상을 이용한 오염방지 친수성능 측정 시스템 개발 (Development of Hydrophilic Performance Measurement System for Anti-Condensation Using Computer Image)

  • 안병태;조성호;최선;김은국;박상수;황헌
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.257-261
    • /
    • 2010
  • Surface energy is the principal factor of anti-condensation. High surface energy appears hydrophilic itself and low surface energy represents hydrophobic itself. The contact angle is widely being used for measurement of surface energy of materials, evaluation of coating performances, measurement of wettability, and so on. However, the existing contact angle measuring system is so expensive for purchasing and complicated, so it takes a lot of time and money to use. This study was conducted to develop the algorithm for evaluating hydrophilic performance through measuring the contact angle of water droplet automatically, and fabricate relatively simple measuring system using a low-cost monochrome camera and image processing. A constant amount of water was firstly allocated on a slide by a micropipette, and then the image of water droplet was captured by monochrome digital camera and sent to a computer. The image was binarized and then reduced noises by labeling. Finally, the contact angle of water droplet was computed by using three points (left, right, and top coordinates), simple linear mathematics, and trigonometric function. The experimental results demonstrated the accuracy and reproducibility of the developed system showing less deviations and deviation ratio.

대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구 (Surface Modification of TiO2 by Atmospheric Pressure Plasma)

  • 조상진;정충경;김성수;부진효
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.22-27
    • /
    • 2010
  • $TiO_2$의 표면의 친수성을 증가시키기 위하여 dielectric barrier discharge (DBD)에 의해 발생된 대기압 플라즈마 (atmospheric pressure plasma: APP)를 이용 RF power 50~200 W 범위에서 Ar과 $O_2$ 가스를 사용 대기압 플라즈마로 광촉매 표면을 개질하였다. Ar 가스 단독으로 처리한 시료의 접촉각은 20도에서 10도로 감소하였으며, $O_2$ 가스를 반응성 가스로 하여 처리한 경우에는 접촉각이 20도에서 1도 미만으로 감소하였다. 동일한 RF power에서 $O_2$ 플라즈마 처리 시 더 낮은 접촉각을 확인하였는데, 이는 $TiO_2$ 표면과 산소원자의 결합으로 인하여 표면의 polar force의 증가에 의한 것으로 판단되어 대기압 플라즈마로 처리된 시료의 X-ray photoelectron spectroscopy (XPS)의 스펙트럼 분석결과 OH 작용기의 증가로 표면의 친수성이 증가됨을 확인하였다. 대기압 플라즈마로 처리된 시료와 처리하지 않은 시료의 접촉각은 모두 시간이 지남에 따라 증가하지만 플라즈마 처리 된 시료의 접촉각 증가는 플라즈마 처리하지 않은 시료의 접촉각 보다 작은 것을 확인하였다. 또한, 페놀 분해 실험을 통하여 플라즈마 표면처리를 통하여 $TiO_2$ 광촉매의 분해 효율이 크게 향상되는 것을 확인하였다.

동적 접촉각 측정을 이용한 실리콘고무 블렌드의 발수성회복 검토 (Hydrophobisity Recovery of PDMS Blended with Fluorinated Silicone Rubber Using Dynamic Contact Angle Measurement)

  • 이창용;류성식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.6-8
    • /
    • 2001
  • This report describes the effect of the blending of poly(trifluoropropylmethylvinylsiloxane) (PTFPMVS) with poly(dimethylsiloxane) (PDMS) on the surface properties such as water repellency using dynamic contact angle (DCA) measurement. We have investigated the surface molecular mobility of the PDMS/PTFPMVS blends via a DCA measurement and an adhesion tension relaxation. It could be shown that a flexible side-chain segment in PTFPMVS having higher surface energy, could be reoriented easily in water to decrease the interfacial tension of the polymer/water interface, which seems to play a major role at the decrease of the receding contact angle and the surface resistivity of PDMS/PTFPMVS blends.

  • PDF