• 제목/요약/키워드: water cement ratio

검색결과 1,137건 처리시간 0.028초

강섬유 혼입량이 철근 부식저항성능에 미치는 영향 (Influence of steel fiber contents on corrosion resistance of steel reinforcement)

  • 김성도;문도영;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.283-293
    • /
    • 2015
  • 본 연구에서는 강섬유보강콘크리트의 부식저항성능을 규명하기 위한 촉진염소이온확산시험과 표면전기저항시험을 수행하였다. 또한 배합평가를 위한 기초시험으로서 굳지 않은 콘크리트 공기량, 일축압축강도, 굳은 콘크리트의 흡습시험을 수행하였다. 실험변수는 두 종류의 물-시멘트비(0.44, 0.50)와 세 개의 강섬유 혼입량(0.25%, 0.5%, 1%)으로 선정하였다. 주목할 것은 모든 타설시 콘크리트의 다짐량은 동일하게 하였다. 시험결과, 동일한 작업량으로 다짐이 되었을 때, 물-시멘트비에 상관없이 두배합 모두에서 강섬유 혼입률이 증가함에 따라 부식저항성능이 감소하는 것으로 확인되었다. 그러나, 동일한 강섬유 혼입비에 대하여 배합의 물-시멘트비가 낮은 콘크리트의 부식저항성능이 우수한 것으로 나타났다. 따라서, 강섬유보강콘크리트의 타설시 유동성의 확보와 충분한 다짐이 염소이온침투저항성능을 확보하기 위하여 매우 중요하다고 판단된다.

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구 (A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength)

  • 조영국
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 화학 혼화제의 영향 (Effects of Chemical Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement)

  • 정찬일;박수경;이의학;이경희
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.23-31
    • /
    • 2007
  • To examine the effects of chemical admixture on the fluidity and strength development of high chloride cement, experiments were conducted in which lignosulfonate (LS), naphthalenesulfonate (NS), and polycorboxylate (PC) were each added in standard and excessive amounts, and the results were as follows. 1. Because adding KCl to NS causes a decrease in flow, adding PC is better in maintaining high cement fluidity. 2. When cement contained much chloride comes in contact with water, hydration begins 4 h after contact and securing workability becomes difficult, but by adding PC, workability can be secured to 10 h. 3. The bound water ratio and compressive strength in aging 3 days occupy $70\sim80%$ of those in aging 28 days, and the early compressive strength increases not only by adding KCl, but also by chemical admixture. 4. Although compressive strength development is excellent in NS, PC, if NS is added excessively, hydration becomes slow and while the pore structures become slightly minute, the strength development decreases due to severe setting retardation.

St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구 (A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes)

  • 형원길;문경주;송훈
    • 콘크리트학회논문집
    • /
    • 제18권6호
    • /
    • pp.785-791
    • /
    • 2006
  • 본 연구에서는 스틸렌(styrene)과 부틸아크릴레이트(butyl acrylate)를 모노머 비에 따라 합성 제조하고, 합성 제조 된 시멘트 혼화용 폴리머를 혼입한 폴리머 시멘트 모르타르의 물리적 성질과 내구성에 대한 특성을 보통 시멘트 모르타르와 기존에 생산되어 현장에 적용되고 있는 St/BA계 폴리머 시멘트 모르타르를 비교 분석하고자 하였다. 실험 결과, St/BA의 모노머 비가 50:50, 60:40일 경우에는 시멘트 혼화용으로 사용하기에 가장 적합하였으며, 세공용적의 분포나 강도 특성에서도 우수한 결과를 나타냈다. 또한 방수성능과 염화물 이온에 대한 침투 저항성도 St/BA의 모노머비가 증가할수록, 폴리머 시멘트 비가 증가할수록 증진 효과가 우수한 결과를 나타냈다. 따라서 본 연구를 통해 합성제조된 St/BA 라텍스를 시멘트 모르타르에 혼입할 경우 우수한 성능개선 효과를 얻을 수 있었다.

Effect of measurement method and cracking on chloride transport in concrete

  • Zhang, Shiping;Dong, Xiang;Jiang, Jinyang
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.305-316
    • /
    • 2013
  • This paper aims to study the effect of measurement methods and cracking on chloride transport of concrete materials. Three kinds of measurement methods were carried out, including immersion test, rapid migration test and steady-state migration test. All of these measurements of chloride transport show that chloride ion diffusion coefficient decreased with the reduction of water to cement ratio. Results of the immersion test were less than that of rapid migration test and steady-state migration test. For the specimen of lower water to cement ratio, the external electrical field has little effect on chloride binding relatively. Compared with the results obtained by these different measurement methods, the lower water to cement ratio may cause smaller differences among these different methods. The external voltage can reduce chloride binding of concrete, and the higher electrical field made a strong impact on the chloride binding. Considering the effect of high voltage on the specimen, results indicate that results based on the steady-state migration test should be more reasonable. For cracked concrete, cracking can accelerate the chloride ion diffusion.

황토와 플라이 애시를 혼입한 시멘트 모르타르 벽돌의 물리 · 역학적 특성 (Physical and Mechanical Properties of Cement Mortar Brick with Loess and Fly Ash)

  • 임성수;성찬용
    • 한국농공학회논문집
    • /
    • 제46권3호
    • /
    • pp.57-63
    • /
    • 2004
  • This study was performed to evaluate the engineering properties of cement mortar brick with loess and fly ash. The unit weight was in the range of $2,068{\sim}2,137\;kgf/m^{3}$ and $1,899{\sim}2,045\;kgf/m^{3}$ in water and dry curing, respectively It was decreased with increasing the loess content. The absorption ratio was in the range of $5.2{\sim}13.1%$ and $8.5{\sim}13.2%$ in water and dry curing, respectively. The compressive strength was decreased with increasing the loess content. The compressive strength of the 193 $kgf/m^{2}$ in water and 188 $kgf/m^{2}$ in dry curing at the curing age 28 days of the binder volume ratio 35% was exceeded in 163 $kgf/m^{2}$ of standard compressive strength about cement bricks. The carbonation depth was in the range of $0.9{\sim}1.4$ mm, $1.2{\sim}3.6$ mm, $1.4{\sim}6.7$ mm and $2.4{\sim}12.5$ mm in dry curing of curing age 14days, 28days, 90days and 360days, respectively.

Al/Ca+Si 비에 따른 시멘트 페이스트의 염화물 고정에 관한 실험적 연구 (The Experiment Study on Chloride Binding of Cement Paste According to The Al/Ca+Si Ratio)

  • 이윤수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.51-52
    • /
    • 2016
  • This paper researches the Chloride Binding of Cement Paste according to the Ca/Si and Ca/Al Ratio. The mechanisms of chloride ion binding are not completely known, although it is believed that Alumina contents in cementitious system have an important role. For changing cement paste composition, Ordinary Portland Cement(OPC) paste is substituted by Granulated Ground Blast Slag(GGBS). With increasing the ratio of GGBS substitution(Thus alumina contents is increasing), The chloride binding capacity has a tendency to increase of binding chloride ion capacity.

  • PDF

풍쇄슬래그 잔골재를 사용한 콘크리트의 공학적 특성에 관한 실험적 연구 (An Experimental Study on the Engineering Properties of Concrete using Fine Aggregate of PS ball Slag)

  • 이상수;송하영;김을용
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.107-114
    • /
    • 2006
  • In this study, the experiment was carried out to investigate and analyze the engineering properties of concrete using fine aggregate of PS bal slagl. The main experimental variables were water/cement ratio 30, 40, 50(%), water content $170kg/m^3$, replacement ratio of slag fine aggregate 0, 25, 50, 75(%) in experiment I and water/cement ratio 30, 40, 50(%), water content 165, 170, 175($kg/m^3$), replacement ratio of fine aggregate of PS ball 0, 50 in experiment II. According to the test results, the principle conclusions are summarized as follows (1) The workability of slag fine aggregate-mixed concrete tends to improve, as the replacement rate increases. (2) The air content of slag fine aggregate-mixed concrete tends to decrease, as the replacement rate increases. (3) The unit volume weight of slag fine aggregate-mixed concrete tends to significantly increase, as the replacement rate increases. (4) The compressive strength of slag fine aggregate-mixed concrete tends to show more increasing propensity, in case the curing period is relatively long, as the replacement rate increases.