• Title/Summary/Keyword: water budget analysis

Search Result 163, Processing Time 0.025 seconds

Water Quality Modeling by the WASP4 Model (WASP4 모형에 의한 수질모델링)

  • 조홍연;전경수;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.221-231
    • /
    • 1993
  • WASP4. an estuarine or lake water quality model, wat applied to simulate future water qualities at alternative withdrawal sites for capital areas. Simulated water quality constituents were Chlorophyll a, nitrogen cycles, Phosphorus, BOD End DO. A Water budget analysis Using the monthly records of reservoir inflows and outflows between 1986 and 1990 was made to determine seasonally-averaged flowrates at model boundaries. Estimated flowrates were used. together with the seasonal water quality inputs simulated by the QUAL2E model, for the simulation of future water qualities. Sensitivities to the future pollutant inputs and possible future withdrawal alternatives were also analyzed. From simulations or future water qualities it is found that among the candidate withdrawal sites. the one located at the downstream end of the North Han River has the best future water quality in all quality constituents and the one at the downstream end of the South Han River has the worst Possible future withdrawal from the North Han River brings a slight increase or pollutant concentrations at existing withdrawal sites. but the aggravation of water quality is not significant.

  • PDF

A Study on the Optimum Size of Rainwater Utilization in Detached Residential Complex (단독주택단지의 빗물이용시설 적정 규모 설정 연구)

  • Baek, Jongseok;Kim, Hyungsan;Shin, Hyunsuk;Kim, Jaemoon;Park, Kyungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.669-677
    • /
    • 2018
  • Torrential rain and drought are repeated due to the increase in the unpredictable fluctuating of rainfall patterns. It is time for stabilize water resource management in terms of disaster prevention. Distributed control from sources is needed to minimize damages caused by torrential rains and droughts. Rain barrel can be used to reduce the runoff as they collect and store rainwater. In response to this situation, Seoul Metropolitan Government and other local governments implemented a project to support the installation of rain barrel and provided 90% of the cost of installing it in private areas. However, with limited budget, it is difficult to distribute rainwater to the city which is mostly covered by private areas. In this study, Samho-dong, Ulsan, where pilot projects of water cycle leading city are underway, analyzed the effects of reducing the runoff with respect to the amount of rainwater that can be used, and analyzed the economics of recoverable investment cost when installed. From the analysis, it was established that it is possible to show sufficient efficiency with a small capacity without the need to install large rain barrel effectively in the private sector, and to support the installation cost of less than 70 percent of the rainwater can be recovered.

A Multiple Regression Model for the Estimation of Monthly Runoff from Ungaged Watersheds (미계측 중소유역의 월유출량 산정을 위한 다중회귀모형 연구)

  • 윤용남;원석연
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.71-82
    • /
    • 1991
  • Methods of predicting water resources availiability of a river basin can be classified as empirical formula, water budget analysis and regression analysis. The purpose of this study is to develop a method to estimate the monthly runoff required for long-term water resources development project. Using the monthly runoff data series at gaging stations alternative multiple regression models were constructed and evaluated. Monthly runoff volume along with the meteorological and physiographic parameters of 48 gaging stations are used, those of 43 stations to construct the model and the remaining 5 stations to verify the model. Regression models are named to be Model-1, Model-2, Model-3 and Model-4 developing on the way of data processing for the multiple regressions. From the verification, Model-2 is found to be the best-fit model. A comparison of the selected regression model with the Kajiyama's formula is made based on the predicted monthly and annual runoff of the 5 watersheds. The result showed that the present model is fairly resonable and convinient to apply in practice.

  • PDF

Analysis of the Effect of Water Budget Elements on Flow Duration Characteristics using SWAT-Nak Dong (낙동강유역 SWAT 모형 구축 및 물수지 시나리오에 따른 유황분석)

  • Shin, Hyun-Suk;Kang, Du-Kee;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.251-263
    • /
    • 2007
  • In this paper, we constructed the integrated watershed model system, SWAT-Nak Dong that include areal mean precipitaiton, runoff and water balance components in the Nak Dong river basins and with this model system we are capable of estimating streamflows for ungaged river stations and analyzing the variations of the streamflows. SWAT(Soil and Water Assessment Tool) is a conceptual, continous time model that was developed in the early 1990s to assist water resource managers in assessing the impact of management and climate on water supplies and non-point source pollution III watersheds and large river basins. Using the SWAT-Nak Dong system and various scenarios, we analyzed and evaluated the dams and water uses effects on the streamflows.

Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin (낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

Recent Trend for the Application of Total Economic Value (TEV) Estimation to Groundwater Resources (지하수자원의 경제적 가치 평가 적용과 관련한 최근동향)

  • Song, Sung-Ho;White, Paul;Zemansky, Gil
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Total Economic Value (TEV) provides a framework to estimate the economic value of water resources including groundwater with multiple applications to natural resource economics and environmental economics. Crucial to the application of economic analysis to natural resources are techniques to value the resources as an economic value that is expressed in monetary terms. On the other hand, the aim of TEV estimation is to determine the economic value of water resources including 'use' with production and recreation and 'non-use' such as existence values. TEV is used to assess the economic value of water resources for the multiple goods, and environmental 'services' that are provided by a water resource and also used to assess options for water use, for example balancing production values provided by water resource use against the cost of resource degradation by that use. The value of TEV can be assessed over time where pollution or unsustainable use may reduce the economic value of an environmental asset. Therefore, values are used to assess options of resource use, sometimes leading to policies on resource conservation or allocation. In conclusion, the application of TEV would be well adjusted over Jeju Island where groundwater resources account for more than 98% water resources and the budget of water demand/supply shows disparity over the Island.

Multi-objective Optimization of BMPs for Controlling Water Quality in Upper Basin of Namgang Dam (남강댐 상류유역 수질관리를 위한 BMPs의 다목적 최적화)

  • Park, Yoonkyung;Lee, Jae Kwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • Optimized BMP plans for controlling water quality using the Pareto trade-off surface curve in upper basin of Namgang Dam is proposed. The proposed alternatives consist of BMP installation scenarios in which the reduction efficiency of non-point pollutants is maximized in a given budget. The multi-objective optimization process for determining the optimal alternatives was performed without direct implementation of a watershed model such as SWAT analysis, thereby reducing the time taken. The shortening of the calculation time further enhances the applicability of the multi-objective optimization technique in preparing regional water quality management alternatives. In this study, different types of BMP are applied depending on the land use conditions. Fertilizer input control and vegetative filter strip are considered as alternatives to applying BMP to the field but only control of fertilizer input can be applied to rice paddies. Fertilizer input control and vegetative filter strip can be installed separately or simultaneously in a hydrologic response unit. Finally, 175 BMP application alternatives were developed for the water quality management of the upper river basin of Namgang dam. The proposed application alternative can be displayed on the map, which has the advantage of clearly defining the BMP installation location.

Integrated Surface-groundwater Analysis in Jeju Island (제주 지역 지표수-지하수 연계 해석)

  • Kim, Nam-Won;Chung, II-Moon;Yoo, Sang-Yeon;Lee, Jeong-Woo;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1017-1026
    • /
    • 2009
  • In Jeju island, the surface runoff characteristics are quite different from those of inland. Most of streams show dried characteristics by means of large portion of recharge which goes to the deep aquifer. For this reason, the accurate estimation of hydrologic components by using watershed model like SWAT is very difficult. On the other hand, the integrated SWAT-MODFLOW model is able to simulate the complex runoff structure including stream-aquifer interaction, spatial-temporal groundwater recharge and so on. The comprehensive results of Pyoseon region in Jeju island show that the amount of groundwater discharge to stream is very small, but it might be added to the discharge into the sea. Statistical analysis shows that SWAT-MODFLOW's results represent better than SWAT's. Also, SWAT-MODFLOW produces a reasonable water budget which shows a quite similar pattern of observed one. This result proves that the integrated SWAT-MODFLOW can be used as a proper tool for hydrologic analysis of entire Jeju island.

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

Land Cover Classification over Yellow River Basin using Land Cover Classification over Yellow River Basin using

  • Matsuoka, M.;Hayasaka, T.;Fukushima, Y.;Honda, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.511-512
    • /
    • 2003
  • The Terra/MODIS data set over Yellow River Basin, China is generated for the purpose of an input parameter into the water resource management model, which has been developed in the Research Revolution 2002 (RR2002) project. This dataset is mainly utilized for the land cover classification and radiation budget analysis. In this paper, the outline of the dataset generation, and a simple land cover classification method, which will be developed to avoid the influence of cloud contamination and missing data, are introduced.

  • PDF