• Title/Summary/Keyword: water blooming

Search Result 88, Processing Time 0.023 seconds

Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS (HS-SPME-GC/MS를 이용한 낙동강 수계 하천수 중 조류기원성 냄새물질 분석)

  • Lee, Injung;Lee, Kyoung-Lak;Lim, Tae-Hyo;Park, Jeong-Ja;Cheon, Seuk
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • Geosmin and 2-methylisoborneol (2-MIB) are volatile organic compounds responsible for the majority of unpleasant taste and odor events in drinking water. Geosmin and 2-MIB are byproducts of blue-green algae (cyanobacteria) with musty and earthy odors. These compounds have odor threshold concentration at ng/L levels. It is needed to develop a sensitive method for determination of geosmin and 2-MIB to control the quality of drinking water. In this study, geosmin and 2-MIB in water samples were determined by gas chromatography-mass spectrometry (GC-MS) with headspace-solid phase microextraction (HS-SMPE). The detection limits of this method were 1.072 ng/L and 1.021 ng/L for geosmin and 2-MIB, respectively. Good accuracy and precision was also obtained by this method. Concentrations of the two compounds were measured in raw waters from Nakdong River in the cyanobacterial blooming season. Water bloom formed by cyanobacteria has been occurred currently in Nakdong River. It is needed to investigate the concentrations of geosmin and 2-MIB to control the quality of drinking water from Nakdong River. Both geosmin and 2-MIB were detected in raw waters from Nakdong River at concentrations ranging from 4 to 24 ng/L and 6 to 16 ng/L, respectively.

The Relationship between Water-Bloom and Distribution of Microorganisms That Inhibit the Growth of Cyanobacterium (Anabaena cylindrica) (수화와 시안세균(Anabaena cylindrica) 생장 억제 미생물 분포도의 상관관계)

  • Kim, Chul-Ho;Lee, Jung-Ho;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.188-193
    • /
    • 1998
  • The authors examined the variations of environmental factors, the distributions of cyanobacteria, heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica according to development and extinction of cyanobacterial bloom at a site in Daechung Dam reservoir. And certified the relationship between each other. Water temperature variated in a typical pattern. pH and concentrations of dissolved oxygen and chlorophylla was high in bloom period, and lowered with the decline of bloom. Phosphorus played as a growth-limiting factor at this study site. Total nitrogen concentration increased during blooming period, which indicated that nitrogen has been fixed by aquatic organisms such as cyanobacteria. Cyanobacteria distributed from June 17, and such cyanobacterial species as Anabaena spp., Aphanizomenon spp., Microcystis spp., Oscillatoria spp. and Phormidium spp. was detected during study period. Anabaena spp. distributed relatively highly distributed from July 23 to September 22, and disappeared completely at September 29. Heterotrophic bacterial and cyanobacterial populations varied inverse-proportionally. There was a relevancy between the variations of Anabaena spp., heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica. Microorganisms that inhibit the growth of Anabaena cylindrica distributed from early growth phase of Anabaena spp. population to immediately after the extinction of Anabaena spp. With the population of Anabaena cylindrica growth-inhibiting microorganisms decreasing, increases of heterotrophic bacterial population followed it. Thease results indicate that microorganisms have a part in the extinction of cyanobacterial bloom, especially at its destroying period.

  • PDF

Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea (영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.320-333
    • /
    • 2016
  • This study was carried out to elucidate the development of unprecedented water-bloom caused by a single species of colonial green algae Eudorina elegans in the upstream area of the Seungchon weir located in the Yeongsan River from late April to May 2013. The Yeongsan River is typically regulated system and the waterbody is seriously enriched by both external and internal sources of nutrients. Seasonal algal outbreaks were highly probable due to various potential factors, such as the excessive nutrients contained in treated wastewater, slow current, high irradiation and temperature, in diatom (winter), green algae (spring) and bluegreen algae (summer). Spring green-tide was attributed to E. elegans with level up to $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$). The bloom was exploded in the initial period of the algal development and after then gradually diminished with transporting to the downstream by the intermittent rainfall, resulting in rapid expansion of the distribution range. Although the pulsed-flows by the weir manipulation was applied to control algal bloom, they were not the countermeasures to solve the underlying problem, but rather there still was a remaining problem related to the impact of pulsed-flows on the downstream. The green-tide of E. elegans in this particular region of the Yeongsan River revealed the blooming characteristics of a colonial motile microalga, and fate of vanishing away by the succeeding episodic events of mesoscale rainfall. We believe that the results of the present study contribute to limno-ecological understanding of the green-tide caused by blue-green algae in the four major rivers, Korea.

Removal of Geosmin and 2-methylisoborneol in Drinking Water by Powdered Activated Carbon (분말 활성탄에 의한 먹는 물 내의 이취미 물질 제거)

  • Chae, A Na;Shin, Jae Won;Cho, Kang Woo;Lee, Byung Chan;Song, Kyung Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.475-483
    • /
    • 2017
  • Geosmin and 2-methylisoborneol (2-MIB) produced by cyanobacteria during algal blooming in surface water are the major taste-and-odor-causing compounds in drinking water and need to be removed. Activated carbon is often used in treatment plants for the mitigation of odor problem. However, there is a lack of information on the effect of pore size distribution and particle size of activated carbon for adsorption of both odor compounds. Therefore, we studied the effect of pore size distribution and particle size of activated carbon on the adsorption of geosmin and 2-MIB. When comparing the adsorption of geosmin and 2-MIB between activated carbon fiber (ACF), powdered activated carbon (PAC) and granular activated carbon (GAC), the order of removal efficiency was PAC > ACF > GAC. As a result of comparing PACs with various pore distribution characteristics, well-developed micropores on activated carbon were found to be favorable for adsorption of geosmin and 2-MIB. For particle size, smaller was more effective for adsorption of geosmin and 2-MIB.

Changes of the Nutrients and Water Trophic States in Upo Wetland (우포늪의 영양염과 수질 영양 상태 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.418-427
    • /
    • 2010
  • In the four swamps of Jjokjibeol, Mokpo, Upo and Sajipo in the Upo wetland, the nitrogen nutrients, phosphorus nutrients and chl-$\alpha$ had been observed during the period from April 2005 to December 2009 on monthly basis. Based on the results, the fluctuations of trophic state in the Upo wetland were estimated. Measurements of the nitrogen nutrients such as $NO_3$-N, $NH_3$-N and T-N showed to be generally decreased in comparison with those in the precent studies. Yet the T-N was still considerably higher than the general concentration level of eutrophication and algal blooming. $PO_4$-P and T-P showed to have reduced considerably in comparison to precedent studies. However, T-P also turned out to be dissolved over the nutrient standard. Nitrogen nutrients and phosphorus nutrients were the lowest in Jjokjibeol in the Upo wetland. The chl-$\alpha$ concentrations were the highest at summer periods in Jjokjibeol and Mokpo. However, the highest at non-summer periods in Upo and Sajipo. Among the four swamps, Upo had the highest density on average of chl-$\alpha$, and Mokpo the lowest. Through TRIX (Trophic Index) analysis evaluating trophic state of the Upo wetland, all four swamps were estimated of poor water quality (eutrophication).

Changes of the Environmental Factors in Upo Wetland (우포늪의 수환경요인 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2009
  • In the Upo wetland, physico-chemical factors were observed during the period from March 2005 to December 2007 on a monthly basis. In the Upo wetland, water temperatures ranged $3.4{\sim}34.5^{\circ}C$. Conductivities were in the range of 133~806 ${\mu}S\;cm^{-1}$, which showed about 140 ${\mu}S\;cm^{-1}$ below in comparison with the precedent studies. The pH levels were between 6.7~9.1 with lower level in summertime. The dissolved oxygens were between 0.06~18.23 mg $L^{-1}$. COD ranged 4.9~20.8 mg $L^{-1}$, and showed a tendency to decrease every year. Nitrogen nutrients such as nitrate nitrogen ($NO_3-N$), ammonia nitrogen ($NH_3-N$) and total nitrogen (T-P) showed that they were generally decreased in comparison with those in the precedent studies. However the total nitrogen (T-N) is still considerably higher than the standard concentration level of eutrophication and algal blooming. Phosphate phosphorus ($PO_4-P$) and total phosphorus (T-P) were also shown as to be reduced considerably comparing with the values in the precedent studies. However, It was found out that total phosphorus (T-P) was dissolved over the criteria concentration of eutrophication. The average of TN/TP ratio was 18 in the Upo wetland, which proved that phosphorus was the limiting factor to the growth of phytoplankton in the Upo wetland. The chl-$\alpha$ was the highest in wintertime and the lowest in summertime, and especially in 2006 summer when the cyanobacterial bloom developed, it showed extremely high concentration.

Influence of Rainfall on Cyanobacterial Bloom in Daechung Reservoir

  • Ahn, Chi-Yong;Kim, Hee-Sik;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.413-419
    • /
    • 2003
  • The water quality and algal communities in the Daechung Reservoir, Korea, were monitored from summer to autumn in 1999 and 2001. Although the average weekly precipitations during June and July were very similar in 1999 and 2001, they were much different during August and September, the so-called blooming season. The rainfall in 1999 increased about 70% after late August, whereas it decreased to the one-fifth level in 2001. The higher concentrations of chlorophyll- a, phycocyanin, and cyanobacteria were observed in 2001, which resulted in the dense algal bloom. In addition, in 2001, the cyanobacterial percentage remained above 80% during the investigation period, and the cyanobacteria were exclusively composed of Microcystis spp. Conversely, there was no report on the algal bloom in 1999. However, the peak bloom seasons were the same for both years, from late August to early September, irrespective of the amount of precipitation. These results suggest that the magnitude and duration of rainfall before bloom season are important factors determining the extent of cyanobacterial bloom in this system.

Population Development of the Dinoflagellates Ceratium furca and Ceratium fusus during Spring and Early Summer in Iwa Harbor, Sagami Bay, Japan

  • Baek, Seung-Ho;Shimode, Shinji;Han, Myung-Soo;Kikuchi, Tomohiko
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.49-59
    • /
    • 2008
  • To examine the population development of the dinoflagellates, Ceratium furca and Ceratium fusus, daily field monitoring was conducted between April and July 2003 in the temperate coastal water of Sagami Bay, Japan. During the study period, the concentrations of C. furca were always lower than those of C. fusus. A sharp increase in the densities of both species was recorded on 5 May showing the maximum cell concentrations (C. furca = $14,800\;cells\;L^{-1}$, C. fusus = $49,600\;cells\;L^{-1}$). In the 7 days prior to the May bloom of the Ceratium species (29 April to 1 May), the highest density of the heterotrophic dinoflagellate Noctiluca scintillans was observed. Additionally, a second bloom of C. fusus occurred on 22 July. Here, two causes of the significant increases in the Ceratium populations during the two blooming periods (first time; 1 to 8 May, second time; 15 to 22 July) are presented. First, an increase in the nutrients of the surface layer regenerated by the breakdown of blooms by N.scintillans could be considered as a major cause of the population increase of the two Ceratium species. Second, a decrease in salinity (to 27 psu) was correlated with the later bloom of C. fusus. These results suggest that the population development of the two Ceratium species requires nutrients regenerated after the reduction of the diatom population by N. scintillans and, for C. fusus, continuous low salinity conditions, compared to other environmental factors during the rainy season.

Dominant causes on the catch fluctuation of a set net fishery in the mid-south sea of Korea (남해 중부해역 정치망어업 어획량 변동의 원인)

  • Kim, Heeyong;Song, Se Hyun;Lee, Sunkil;Kim, Jong-Bin;Yoo, Joon-Taek;Jang, Dae-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.250-260
    • /
    • 2013
  • The annual and monthly fluctuation in the species composition and the catch abundance of dominant species were analyzed using the daily sales slip catch data by a set net in the offshore waters off Dolsan Island in Yeosu from March 2004 to December 2011. Mean catch from 2004 to 2011 is 372M/T and the maximum and the minimum catch are 526 M/T in 2005 and 27 2M/T in 2009, respectively. The dominant species were Engraulis japonicus mainly in spring and Scomberomorous niphonius in Autumn and therefore the set net catch that is dominated by S. niphonius's catch was much higher in autumn than in spring. Through comparative analyses for the environmental factors to the annual catch fluctuation, it is revealed that the water temperature variation affected the recruitment property of S. niphonius to the fishing ground but the effect of typhoon on the catch fluctuation was not distinct. Furthermore, the big blooming event of jellyfish, particularly Nemopilema nomurai, that occurred in 2009 showed a tendency of faster appearance and later extinction until December. The occurring characteristic of N. nomurai became a direct cause that brought about the lowest total catch in 2009 since the dominant species catch of the set net fishery was concentrated mostly in Autumn.

Distribution of Alexandrium tamarense in Drake Passage and the Threat of Harmful Algal Blooms in the Antarctic Ocean

  • Ho, King-Chung;Kang, Sung-Ho,;Lam Ironside H.Y.;Ho, dgkiss I.John
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.625-631
    • /
    • 2003
  • While phytoplankton diversity and productivity in the Southern Ocean has been widely studied in recent years, most attention has been given to elucidating environmental factors that affect the dynamics of micro-plankton (mainly diatoms) and nano-plankton (mainly Phaeocystis antarctica). Only limited effects have been given to studying the occurrence and the potential risks associated with the blooming of dinoflagellates in the relevant waters. This study focused on the appearance and toxicological characteristics of a toxic dinoflagellate, Alexandrium tamarense, identified and isolated from the Drake Passage in a research cruise from November to December 2001 The appearance of A. tamarense in the Southern Ocean indicates the risk of a paralytic shellfish poisoning (PSP) outbreak there and is therefore of scientific concern. Results showed that while the overall quantity of A. tamarense in water samples from 30meters below the sea surface often comprised less than 0.1% of the total population of phytoplankton, the highest concentration of A. tamarense (20 cells $L^{-1}$) was recorded in the portion of the Southern Ocean between the southern end of South America and the Falkland Islands. Waters near the Polar Front contained the second highest concentrations of 10-15 cells $L^{-1}$. A. tamarense was however rarely found in waters near the southern side of the Polar Front, indicating that cold sea temperatures near the Antarctic ice does not favor the growth of this dinoflagellate. One strain of A. tamarense from this cruise was isolated and cultured for further study in the laboratory. Experiments showed that this strain of A. tamarense has a high tolerance to temperature variations and could survive at temperatures ranging from $5-26^{\circ}C$. This shows the cosmopolitan nature off. tamarense. With regard to the algal toxins produced, this strain of A. tamarense produced mainly C-2 toxins but very little saxitoxin and gonyailtoxin. The toxicological property of this A. tamarense strain coincided with a massive death of penguins in the Falkland Islands in December 2002 to January 2003.