DOI QR코드

DOI QR Code

Removal of Geosmin and 2-methylisoborneol in Drinking Water by Powdered Activated Carbon

분말 활성탄에 의한 먹는 물 내의 이취미 물질 제거

  • Received : 2016.12.08
  • Accepted : 2017.03.03
  • Published : 2017.04.01

Abstract

Geosmin and 2-methylisoborneol (2-MIB) produced by cyanobacteria during algal blooming in surface water are the major taste-and-odor-causing compounds in drinking water and need to be removed. Activated carbon is often used in treatment plants for the mitigation of odor problem. However, there is a lack of information on the effect of pore size distribution and particle size of activated carbon for adsorption of both odor compounds. Therefore, we studied the effect of pore size distribution and particle size of activated carbon on the adsorption of geosmin and 2-MIB. When comparing the adsorption of geosmin and 2-MIB between activated carbon fiber (ACF), powdered activated carbon (PAC) and granular activated carbon (GAC), the order of removal efficiency was PAC > ACF > GAC. As a result of comparing PACs with various pore distribution characteristics, well-developed micropores on activated carbon were found to be favorable for adsorption of geosmin and 2-MIB. For particle size, smaller was more effective for adsorption of geosmin and 2-MIB.

녹조현상 발생시 남조류에 의하여 발생하는 이취미 물질인 Geosmin과 2-methylisoborneol(2-MIB)는 수돗물에 냄새를 유발하는 원인 물질로서 제거가 필요하다. 일반적으로 정수장에서는 이취미 물질의 제거를 위하여 활성탄을 사용하고 있으나 활성탄의 기공 분포와 활성탄의 입자크기가 이취미 물질 흡착제 미치는 영향에 대한 정보는 부족하다. 따라서, 본 연구에서는 다양한 활성탄의 기공분포와 활성탄의 입자 크기가 이 취미 물질 흡착에 미치는 영향을 살펴보았다. 분말활성탄(PAC), 입상활성탄(GAC), 활성탄소섬유(ACF)의 이취미 물질 흡착을 비교한 결과, PAC > ACF > GAC 순서로 이취미물질 흡착제거효율이 높았다. 다양한 기공분포 특성을 갖는 분말활성탄들을 비교한 결과, 미세기공이 잘발달된 경우가 Geosmin과 2-MIB의 흡착에 유리한 것으로 나타났으며, 입자 크기의 경우에는 작을수록 Geosmin과 2-MIB의 흡착에 보다 효과적이었다.

Keywords

References

  1. Antonopoulou, M., Evgenidou, E., Lambropoulou, D. and Konstantinou, I. (2014). "A review on advanced oxidation processes for the removal of taste and odor compounds fom aqueus media." J. Water. Res., Vol. 53, pp. 215-234. https://doi.org/10.1016/j.watres.2014.01.028
  2. Cook, D. and Newcombe, G. (2001). "The application of powdered activated carbon for MIB and geosmin removal : predicting PAC doses in four raw waters." J. Water. Res., Vol. 35, pp. 1325-1333. https://doi.org/10.1016/S0043-1354(00)00363-8
  3. Gregg, S. J. and Sing, K. S. W. (1982). Adsorption Surface Area and Porosity, Academic Press, London, pp. 7-10, 35-73, 121-189.
  4. Hernandez-Montoya, V., Garcia-Servin, J. and Bueno-Lopez, J. I. (2012). "Thermal treatments and activation procedures used in the preparation of activated carbons." Lignocellulosic Precursors Used in the Synthesis of Activated Carbon - Characterization Techniques and Applications in the Wastewater Treatment, book edited by Virginia Hernandez Montoya and Adrian Bonilla Petriciolet, ISBN 978-953-51-0197-0.
  5. Ho, L. and Newcombe, G. (2005). "Effect of NOM, turbidity and floc size on the PAC adsorption of MIB during alum coagulation." J. Water. Res. Vol. 39, No. 15, pp. 3668-3674. https://doi.org/10.1016/j.watres.2005.06.028
  6. Juttner, F. and Waston, S. B. (2016). "Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters." J. Appl. Environ. Microbio., Vol. 73, No.14, pp. 4395-4406.
  7. Kim, C., Lee, S. I., Hwang, S., Cho, M., Kim, H. S. and Noh, S. H. (2014). "Removal of geosmin and 2-methylisoboneol (2-MIB) by membrane system combined with powdered activated carbon (PAC) for drinking water treatment." J. Water. Process. Eng., Vol. 4, pp. 91-98. https://doi.org/10.1016/j.jwpe.2014.09.006
  8. Lee, H. J., Son, H. J., Lee, C. W., Bae, S. D. and Kang, L. S. (2007). "Effects of activated carbon types and service life on removal of ordorous compounds : Geosmin and 2-MIB." J. of KSEE, Vol. 29, No. 4, pp. 404-411.
  9. Lu, Q. and Sorial, G. A. (2004). "The role of adsorbent pore size distribution in multicomponent adsorption on activated carbon." Carbon, Vol. 42, pp. 3133-3142. https://doi.org/10.1016/j.carbon.2004.07.025
  10. Matsui, Y., Yoshida, T., Nakao, S., Sakamoto, A., Taniguchi, T., Pan, L., Matsushita, T. and Shirasaki, N. (2015). "Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics." Water. Res., Vol. 85, pp. 95-102. https://doi.org/10.1016/j.watres.2015.08.017
  11. McGuire, M. J., Krasner, S. W., Hwang, C. J. and Izaguirre, G. (1983). "An early warning system for detecting earthy-musty odors in reservoir." J. Water Sci. Tech., Vol. 5, pp. 266-277.
  12. Moreno-Castilla, C. (2008). "Adsorption of organic solutes from dilute aqueous solutions." Adsorption by Carbons, Edited by Bottani, E. J. and Tascon, J. M. D., Elsevier Ltd.
  13. Najm, I., Snoeyink, V. L., Suidan, M. T., Lee, C. H. and Richard, Y. (1990). "Effect of particle size and background natural organics on the adsorption efficiency of PAC." Journal of the American Water Works Association, Vol. 82, No. 1, pp. 65-72. https://doi.org/10.1002/j.1551-8833.1990.tb06907.x
  14. Newcombe, G., Morrison, J. and Hepplewhite, C. (2002a). "Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption." J. CARBON, Vol. 40, pp. 2135-2146. https://doi.org/10.1016/S0008-6223(02)00097-0
  15. Newcombe, G., Morrison, J., Hepplewhite, C. and Knappe, D. R. U. (2002b). "Simultaneous adsorption of MIB onto activated carbon : II. Competitive effects." J. CARBON, Vol. 40, pp. 2147-2156. https://doi.org/10.1016/S0008-6223(02)00098-2
  16. Nowack, K. O., Cannon, F. S. and Mazyck, D. W. (2004). "Enhancing activated carbon adsorption of 2-Methylisoborneol: methane and steam treatments." Environ. Sci. Technol., Vol. 38, No. 1, pp. 276-284. https://doi.org/10.1021/es026397j
  17. Solum, M., Pugmire, R. J., Jagroyen, M. and Derbyshire, F. (1995). "Evolution of carbon structure in chemically activated wood." Carbon, Vol. 33, No. 9, pp. 1247-1254. https://doi.org/10.1016/0008-6223(95)00067-N
  18. Srinivasan, R., Sorial, G. A., Ononye, G., Husting, C. and Jackson, E. (2008). "Elimination of persistent odorous compounds in drinking water." Water Science and Technology-Water Supply, Vol. 8, No. 2, pp. 121-127. https://doi.org/10.2166/ws.2008.057
  19. Srinivasan, R. and Sorial, G. A. (2009). "Adsorption of Geosmin and MIB on activated carbon fibers-single and binary solute system." J. Water. Air Soil Pollut., Vol. 9, No. 3, pp. 223-235. https://doi.org/10.1007/s11267-009-9217-y
  20. Srinivasan, R. and Sorial, G. A. (2011). "Treatment of taste and odor causing compounds 2-methylisoborneol and geosmin in drinking water: A critical review." J. Environ. Sci., Vol. 23, No. 1, pp. 1-13. https://doi.org/10.1016/S1001-0742(10)60367-1
  21. Srivastava, A., Anh, C.-Y., Asthana, R. K., Lee, H.-G. and Oh, H.-M. (2015). "Status, alert system, and prediction of cyanobacterial bloom in South Korea." BioMed Research International, Vol. 2015, Article ID 584696, 8 pages, http://dx.doi.org/10.1155/2015/584696
  22. Torregrosa, R. and Martin-Martinez, J. M. (1991) "Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous texture." Fuel, Vol. 70, No. 10, pp. 1173-1180. https://doi.org/10.1016/0016-2361(91)90238-6
  23. Yu, J., Yang, M., Lin, T. F., Guo, Z., Zhang, Y., Gu, J. and Zhang, S. (2007). "Effect of surface characteristics of activated carbon on the adsorption of 2-methylisobornel (MIB) and geosmin from natural water." J. Seper. Purifi. Tech., Vol. 56, pp. 363-370. https://doi.org/10.1016/j.seppur.2007.01.039
  24. Yuan, B., Xu, D., Li, F. and Fu, M. L. (2013). "Removal efficiency and possible pathway of odor compounds (2-methylisoborneol and geosmin) by ozonation." J. Separ. Puri. Tech., Vol. 117, pp. 53-58. https://doi.org/10.1016/j.seppur.2013.04.029