• Title/Summary/Keyword: water blooming

Search Result 88, Processing Time 0.03 seconds

Characteristics of Phytoplankton Communities in the Coastal Waters of Power Plant (발전소 주변해역 식물플랑크톤의 군집 특성)

  • Kang, Yeon-Shik
    • ALGAE
    • /
    • v.23 no.1
    • /
    • pp.31-52
    • /
    • 2008
  • This study analyzes characteristics of phytoplankton communities around Wolseong nuclear power plant by selecting 16 stations from July 2006 to June 2007 and understands the influences on standing crops and chlorophyll a of phytoplankton by passing through the cooling water system. The total species number is 283, among which diatoms is 208 occupying 73.5% of total taxa. The mean of total standing crops is 469,380-3,704,114 cells L-1. It is the highest in April 2007 because blooming of Chaetoceros socialis occurs during this period. The mean standing crops of microplankton and nanoplankton are average 129,666-3,392,640 cells L-1 and 240,943-650,505 cells L-1 respectively, which occupy 54.01% and 46.54% of total standing crops. The mean concentrations of total chlorophyll a is 0.64-5.39 μg L-1. The mean concentrations of chlorophyll a of microplankton, nanoplankton and picoplankton are 1.33 μg L-1, 0.21 μg L-1 and 0.49 μg L-1 respectively. Dominant species around Wolseong neclear power plant during this study are Chaetoceros debilis, Chaetoceros socialis, Leptocylindrus danicus, Pseudo-nitzschia fraudulenta, P. subfraudulenta and Thalassiosira decipiens. Fluctuation rates of standing crops and chlorophyll a concentrations of phytoplankton passing through the cooling water system are 22.80% and 50.48% respectively. Decrease of standing crops and chlorophyll a concentrations of phytoplankton means that community structure of phytoplnakton may change at the discharge areas.

Control of Microalgal Growth and Competition by N: P Ratio Manipulation (N: P ratio 조절에 의한 미세조류 생장과 경쟁 제어)

  • Ahn, Chi-Yong;Lee, Jae-Yon;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.61-68
    • /
    • 2013
  • Microalgae can grow autotrophically with the supply of light, carbon dioxide and inorganic nutrients in water through photosynthesis. Generally, microalgal growth is limited by the concentrations and relative ratio of nitrogen (N) and phosphorus (P) among the nutrients in the aquatic environment. Each microalga has its specific optimum N : P ratio resulting in dominance in a particular water having similar nutrient composition. Algal bloom is an immense growth of certain microalga commonly cyanobacterium and can be sequestrated by reducing the limiting nutrient, generally P in the freshwater. Moreover, dominance of a less toxic blooming strain can be established by manipulating N : P ratio in the water. On the other hand, microalgal biomass of a certain species can be enhanced by increasing limiting nutrient and adjusting the N : P ratio to the target species. The above-mentioned eco-physiological features of microalgae can be more completely interpreted in connection with their genomic informations. Consequently, microalgal growth regulation which can be achieved on the basis of its eco-physiological and further genomic insights would be helpful not only in the control of algal bloom, but also for an increased yield of algal biomass.

A Study on Water Quality Improvement of Hoeya Dam Reservoir Using Ecological Constructed Wetland (생태적 인공습지를 이용한 회야댐 수질개선에 관한 연구)

  • Lee, Sang-Hyeon;Cho, Yun-Chul
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.489-497
    • /
    • 2011
  • In this study the main purpose is to reduce non-point source pollution and improve water quality of Hoeya reservoir using constructed wetlands. As part of the efforts to improve water quality of the reservoir, cattail and reed-wetland cells were constructed in front of the reservoir to remove nitrogen(N) and phosphorus(P). Also, effects of hydraulic and seasonal variation on removal efficiencies of N and P were investigated. Total P and N removal efficiencies of the wetland system were approximately 20.7% and 42.7%, respectively. Removal efficiencies of N and P during the growth season (july to august) and blooming season of cattail and reed (september to october) were higher than other seasons. These results suggest that wetland system could be an effective alternative for control of non-point source pollutnat such as N and P of reservoir.

DEVELOPMENT OF NIGHT COOLING SYSTEM FOR GREENHOUSE USING COOL AIR AND WATER FROM AN ABANDONED COAL MINE

  • Whoa S. Kang;Wie S. Kang;Lee, Gwi H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1136-1145
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night to get early blooming of strawberries. Various cooling systems were designed and constructed to utilize the cool air and water from tan abandoned coal mine. Cooling systems built for this study were an evaporative cooling system with pad, cooling system using a small or large radiator , and duct cooling system using cool are drawn from coal mine. These systems were individual tested to investigate their effects on cooling greenhouse during summer night. Also, a combined cooling system was tested with operating an evaporative cooling system, small radiator, and duct cooling system simultaneously. The results in this study showed that individual cooling systems such as evaporative cooling system, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined system had little better cooling effect than that of individual cooling syst m except the large radiator . The most effective system for cooling of greenhouse was obtained with using a large a large radiator as the heat exchanger. With operating a large radiator, temperature inside the greenhouse was dropped to about 15-16$^{\circ}C$ while outside temperature was 23-24$^{\circ}C$ during summer night.

  • PDF

Pollutant Load Characteristics of a Rural Watershed of Juam Lake (주암호 농촌 소유역 오염부하특성)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Jung, Jae-Woon;Yoon, Suk-Gun;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.77-86
    • /
    • 2005
  • A monitoring study has been conducted to identify hydrologic conditions, water quality and nutrient loading characteristics of small watershed in Juam Lake. Climate data of the watershed were collected; flow rate was measured and water quality sampling was conducted at the watershed outlet for this study. Water quality data revealed that T-P concentrations meet I grade of lake water quality standard during non-storm period, but degraded up to II-III grade of lake water quality standard during storm period. The observed T-N concentrations always exceeded lake water quality standard. Therefore, T-P was identified as limiting chemical constituent for eutrophication of Juam Lake. T-P concentration of non-storm period also revealed that point source pollution is not serious in the watershed. Three year monitoring results showed that the observed T-N losses were $10.85\~18.88$ kg/ha and T-P losses were $0.028\~0.323$ kg/ha during six month (Mar. - Oct.), respectively. Major portion of runoff amount discharged by a few storm events a year and nutrient load showed apparent seasonal variation. Huge runoff amounts were generated by intense storms, which make application of water treatment or detention facilities ineffective. Monitoring results confirmed that water quality improvement by abating nonpoint source pollution in rural watershed of monsoon climate should be focused on source control. T-P losses from paddy field seemed to consist of significant amount of total load from study watershed. Therefore, management of drainage from paddy field is considered to be important for preventing algal blooming problem in Juam Lake.

Taxonomy and Ecology of Euglenoids (Euglenophyceae) and Their Application to Environmental Education (유글레나조류의 분류 및 생태와 환경 교육)

  • 김준태;부성민
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.367-376
    • /
    • 2000
  • Euglenoids occurring in freshwaters are indicator organisms to be used for assessing water quality and applying to environmental education. One hundred sixty eight taxa of euglenoids belonging to three orders, four families and nine genera occur in various waters, especially in eutrophicated and polluted places in Korea. Members of Euglena and Strombomonas are abundant in urban drainages and old ponds, and those of Trachelomonas, Phacus, and Lepocinclis often occur in stagnant waters such as natural wetlands and old swamps. Population size of some euglenoids is significantly correlated to nitrogenous nutrients. Euglena caudata, E. doses, E. ehrenbergii, E. haemichromata, E. geniculata, E. viridis, Lepocinclis ovum, Strombomonas urceolata, Phacus trypanon, Trachelomonas hispida, and T volvocina cells in Korea bloomed in winter and spring, when other phytoplanktonic algae greatly decrease. Blooming of euglenoids indicates tolerance to pollutants and positive selection as a result of competition with other phytoplankton species. We developed a web site on green euglenoids (Yahoo. com: Science/ Biology/ Botany/ Phycology/ Biology of Green Euglenoids), which may be use d for cyber education of water environment. We also presented a method for assessing water quality using diversity and population size of euglenoids, which is considered to be suitable for environmental education of polluted waters.

  • PDF

Effect of Climate Change for Diatom Bloom at Winter and Spring Season in Mulgeum Station of the Nakdong River, South Korea (낙동강 물금 지점의 겨울 및 봄철 식물플랑크톤 생물량에 대한 기후변화 영향)

  • Joung, Seung-Hyun;Park, Hae-Kyung;Lee, Hae-Jin;Lee, Soo-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.155-164
    • /
    • 2013
  • To confirm the relationship between climate change and Stephanodiscus in Mulgeum station of Nakdong River, Korea, this study was conducted. The temperature in crease by climate change was observed in the study site, where the temperature was gradually increased in most seasons, except for summer season. The mass proliferation of Stephanodiscus constantly appeared in every year, especially between November and March, and when Stephanodiscus abundance was above 90% in phytoplankton biomass. Among this period, phytoplankton biomass was high related with water temperature ($r^2$=0.249, P<0.01) than nutrient factors such as nitrogen and phosphorus in the study site. Finally, temperature by climate change can be regarded as the affecting factor for chl. a variation, because temperature was strongly related with water temperature ($r^2$=0.748, P<0.01). From 1997 to 2010, the annual maximum phytoplankton biomass was recorded in the range of temperature from $4.8^{\circ}C$ to $8.4^{\circ}C$, and the range was regarded as the temperature condition for the optimal growth of Stephanodiscus in the study site. On the optimal growth temperature, the trend of monthly average temperature corresponded to the trend of chl. a variation from November to March. In future, the increase of temperature by climate change can prolong Stephanodiscus blooming period in winter and spring seasons.

CONTROL OF DIATOM BY PREOXIDATION AND COAGULATION IN WATER TREATMENT

  • Seo, Jeong-Mi;Kong, Dong-Soo;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Conventional coagulation is still the main treatment process for algae removal in water treatment. The coagulation efficiency can be significantly improved by the preoxidation of algae-containing water. Jar test was conducted to determine the optimal condition for the removal of diatoms, especially Cyclotella sp. by preoxidation and the subsequent coagulation. The effects of various concentration of PAC (Polyaluminum chloride) on coagulation with and without preoxidation using chlorine or potassium permanganate at different pHs (7.7 and 9.0) were evaluated. At pH 7.7, preoxidation with 2ppm $Cl_2$ followed by coagulation with 7.5 ppm PAC coagulant could reduce Cyclotella sp. concentration by 86%. At pH 9.0, preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant reduced Cyclotella sp. concentration by 85%. Non-linear regression was applied to determine the optimal condition. At pH 7.7 and 9.0, R was over 0.9, respectively. The pH of algal blooming water is over 9.0. Algae (diatom; Cyelotella sp.) can be controlled in the following ways: preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant can remove 80% algae from water. If water pH is adjusted to 7.7, it was expected that less amount of coagulant (7.5 or 10 mg PAC /L) after preoxidation ($Cl_2$ 2 ppm or $KMnO_4$ 0.33, 1 ppm) would be needed to achieve similar level of algae removal. The oxidation with 0.33ppm $KMnO_4$ followed by coagulation with 7.5 ppm PAC coagulant was preferable due to cost-effectiveness of treatment condition and color problem after treatment.

Evaluation of Organic Matter Sources of Phytoplankton in Paldang Reservoir using Stable Isotope Analysis (팔당호 내 식물플랑크톤 안정동위원소 분석을 통한 유기물 기원 평가)

  • Kim, Jongmin;Kim, Bokyong;Kim, Minseob;Shin, Kisik
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • The organic matter sources of phytoplankton and related environmental factors influencing algal bloom in Paldang reservoir were studied using nitrogen and carbon isotope ratio(${\delta}^{15}N$, ${\delta}^{13}C$). Phytoplankton samples for stable isotope analysis were collected from four points in reservoir using a plankton net. Physicochemical water quality, algal taxa and hydrological data were collected from published monitoring material. Phytoplankton samples were analyzed by IRMS. CN ratio of each sample was very similar to that of phytoplankton from literature cited. ${\delta}^{15}N$ of each sample was decreased during July. Mixing and dilution of nitrogen sources due to increment of influx by concentrated rainfall were considered as the main reason for the decline of ${\delta}^{15}N$. Based on analyzed ${\delta}^{15}N$ value of each sample, nitrogen source of Bughan river sample was presumed to come from soil. The nitrogen sources of Namhan river and Kyeongan stream samples seemed to be sewage or animal waste. Low ${\delta}^{15}N$ value in August (2012) seemed to be influenced by isotope fractionation due to the blooming of nitrogen-fixation blue-green algae (Anabaena spp.). Variation in ${\delta}^{15}N$ values particularly by blue-green algal bloom was considered the important factor for estimating the organic matter sources of phytoplankton.

Dependence of Sub-Cellular Activities of the Blooming and Harmful Dinoflagellate Cochlodinium Polykrikoides on Temperature (수온에 따른 유해성 Cochlodinium polykrikoides 적조생물의 세포생리 변화)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1194-1201
    • /
    • 2008
  • Water temperature-dependent fluctuations of biochemical and molecular activities in the harmful dinoflagellate, Cochlodinium polykrikoides were studied. In terms of genomic DNA concentration, a similar value of 0.6 was observed at $12^{\circ}C$ and $15^{\circ}C$. However, DNA significantly increased beyond $18^{\circ}C$ (p<0.05), to a maximum of 1.8 at $24^{\circ}C$. DNA concentration significantly decreased to 0.6. The concentrations of RNA and total protein were likely at their highest values of 1.7 and 0.07 ${\mu}g$ $ml^{-1}$ at $24^{\circ}C$, respectively. RNA and total protein concentrations began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate ($ETR_{max}$), ranging from 537.9 (Ch 1) to 602.5 ${\mu}mol$ electrons $g^{-1}$ Chl ${\alpha}s^{-1}$ (Ch 4), was also apparent. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 ${\mu}mol$ $NO_{2}^{-}$ ${\mu}g^{-1}$ Chl ${\alpha}h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ at $24^{\circ}C$, respectively. In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). Most of the measurements for the cellular activities at $27^{\circ}C$, however, were less than at $24^{\circ}C$. These results suggest that the sub-cellular activities of C. polykrikoides are sensitive to changes in water temperature. It may be desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms beyond $24^{\circ}C$ because of a possibly significant decrease in molecular activity of C. polykrikoides.