• Title/Summary/Keyword: water bloom

Search Result 441, Processing Time 0.038 seconds

Influence of Rainfall on Cyanobacterial Bloom in Daechung Reservoir

  • Ahn, Chi-Yong;Kim, Hee-Sik;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.413-419
    • /
    • 2003
  • The water quality and algal communities in the Daechung Reservoir, Korea, were monitored from summer to autumn in 1999 and 2001. Although the average weekly precipitations during June and July were very similar in 1999 and 2001, they were much different during August and September, the so-called blooming season. The rainfall in 1999 increased about 70% after late August, whereas it decreased to the one-fifth level in 2001. The higher concentrations of chlorophyll- a, phycocyanin, and cyanobacteria were observed in 2001, which resulted in the dense algal bloom. In addition, in 2001, the cyanobacterial percentage remained above 80% during the investigation period, and the cyanobacteria were exclusively composed of Microcystis spp. Conversely, there was no report on the algal bloom in 1999. However, the peak bloom seasons were the same for both years, from late August to early September, irrespective of the amount of precipitation. These results suggest that the magnitude and duration of rainfall before bloom season are important factors determining the extent of cyanobacterial bloom in this system.

Assessment of the Marine Environment in Masan-Jinhae Bay of Korea in Relation to Algal Blooms

  • Lee, Moon-Ock;Kim, Pyeong-Joo;Moon, Jin-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.7-24
    • /
    • 2008
  • Masan-Jinhae Bay, in Korea, is known for its frequent algal bloom outbreaks. This study was conducted in order to examine the environmental characteristics of the area, with the aim of identifying indicators that could be used to speculate about future algal blooms. The water temperatures and salinities in Haengam Bay, one of the small inner bays within Jinhae, appeared to re relatively higher than those in Masan and Jinhae bays, across most seasons. Furthermore, stratification begins to develop in all three regions from spring to summer as a result of the local heating effects and an increase in the efficient from the surrounding land. As a result, anoxic conditions appear near the bottom layer of the bay, leading to the deterioration of water quality, which has been identified as one of the causes of bloom outbreaks. Compared to Haengam and Jinhae bays, concentrations of DIN and DIP were remarkably higher in Masan Bay. However, the mean ratio of DIN to DIP was 3.3$\sim$13.6 in all three regions throughout the year, suggesting that nitrogen can function as a growth-limiting factor for phytoplankton. The results of mathematical models showed that cumulative organic pollutants may be a trigger for direct algal bloom occurrences, since residual tidal currents appeared to be less than $3\;cm\;\cdot\;s^{-1}$. Furthermore, computed DO concentrations in the four small inner bays of Jinhae during the summer appeared to be $3\;cm\;\cdot\;l^{-1}$ indicating a hypoxic state. Likewise, computed Chl-a concentrations turned out to be more than $0.01\;mg\;\cdot\;l^{-1}$, indicating eutrophication across most seasons. Based on the overall results, Masan-Jinhae Bay appeared to possess a very high potential for algal bloom outbreaks at anytime during the year.

Effect of Silver Ion Solution on the Inhibition of Microcystis Growth (은이온 수용액의 Microcystis 생장 억제 효과)

  • Choi, Gang-Guk;Lee, Sang-Hun;Bae, Kie-Seo;Shin, Jae-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • The effect of silver ion solution on the growth of Microcystis aeruginosa UTEX 2388 (cyanobacterium) and Chlorella sp. KCTC AG20136 (green alga) was investigated using separated and mixed culture in filtered natural water and BG11 medium. In separated culture, M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 were found to be sensitive to 0.01 and 0.1 mg L$^{-1}$ of silver ion, respectively. Also, the silver ion concentrations for the growth inhibition of M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 in the mixed culture were same in separated culture. Cyanobacteria were more sensitive to the silver ion solution than green algae. In bloom sample, the minimal inhibition concentration of silver ion solution for the low Chl-${\alpha}$ sample (110$\sim$190 ${\mu}g$ L$^{-1}$) and high Chl-${\alpha}$ sample (1,500$\sim$1,900 ${\mu}g$ L$^{-1}$) was about 0.1 and 3.0 mg L$^{-1}$, respectively. The silver ion concentration for the inhibition of algal bloom sample was affected by the algal biomass. In order to use silver ion solution for the control of algal bloom, the silver ion concentration must be determined in consideration of a minimal effect on the environment.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

Modeling the Flushing Effect of Multi-purpose Weir Operation on Algae Removal in Yeongsan River (영산강 다기능보 운영에 따른 플러싱 및 조류 배제 효과 모델링)

  • Chong, Sun-a;Yi, Hye-suk;Hwang, Hyun-sik;Kim, Ho-joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.563-572
    • /
    • 2015
  • The purpose of this study was to model the effect of flushing discharge on algae removal by multi-purpose weir operation in Yeongsan River (Seungchon Weir) using a 3-dimensional (3D) model. The chlorophyceae Eudorina sp. formed bloom in May 2013. Flushing discharge was conducted in two different ways for algal bloom reduction. To elucidate the spatial variability, a high-resolution 3D model, ELCOM-CAEDYM, was used to simulate the spatial variations of water quality and chl-a over a month. The results showed that ELCOM-CAEDYM could reproduce highly spatially resolved field data at low cost, and showed very good performance in simulating the pattern of algal bloom occurrence. The effect of each flushing discharge operation was analyzed with the results of modeling. The results of case 1, flushing discharge using an open movable weir, showed that the algal bloom between the Seochang Bridge and the Hwangryong River junction is rapidly flushed after operating the movable weir, but the residual algae remained in the weir pool as the discharge decreased. However, the results of case 2, fixed weir overflow with a small hydropower stop, showed that most of the algae was removed after flushing discharge and the effect of algae removal was much bigger than that in case 1, as per modeling results and observed data.

Analysis the Effects of Curtain Weir on the Control of Algal Bloom according to Installation Location in Daecheong Reservoir (대청호 수류차단막 설치 위치에 따른 녹조제어 효과 분석)

  • Lee, Heung Soo;Chung, Se Woong;Jeong, Hee Young;Min, Byeong Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.231-242
    • /
    • 2010
  • The objective of study was to determine an optimal location of a float-type curtain weir in Daecheong Reservoir and to assess its effectiveness for the control of algal blooms in the reservoir. CE-QUAL-W2, a laterally averaged two-dimensional hydrodynamic and eutrophication model, was modified to accommodate vertical displacement of the weir according to water surface fluctuation and applied to simulate the reservoir hydrodynamics and water quality changes for the reservoir. The model calibrated in a previous study was updated and validated for different hydrological conditions representing drought year (2008) and normal year (2006) for the study, and adequately simulated the temporal and spatial variations of water temperature, nutrients and algal (Chl-a) concentrations. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the validated model to 2001 and 2006 assuming 9 scenarios for different installation locations. The reduction rates of algal concentration were placed in the range of 11.2~40.3% and 20.3~56.7% for 2001 and 2006, respectively. Although, the performance of curtain weir was slightly varied for different locations and different hydrological years, overall, the performance was improved as the weir was installed further downstream.

Relationship between Sea Surface Temperature derived from NOAA Satellites and Cochlodinium polykrikoides Red Tide occurrence in Korean Coastal Waters (NOAA 위성자료에 의한 해수표면 수온분포와 Cochlodinium polykrikoides 적조 발생의 상관성)

  • Suh, Young-Sang;Kim, Jeong-Hee;Kim, Hak-Gyoon
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.215-221
    • /
    • 2000
  • The relationship between the distribution of sea surface temperature(SST) and dinoflagellate(Cochlodinium polykrikoides) bloom areas were studied. The SST data were derived from the infrared channels of AVHRR(Advanced Very High Resolution Radiometer) sensor on NOAA(National Oceanic and Atmospheric Administration) 12 and 14 satellites during 1995-1998. The initial water temperature at C. polykrikoides bloom was about 21${\circ}C$ at the coastal areas of the South Sea and along the shore of the East Sea of Korea during the summer season of 1995. The northern limit of red tides was coincident with that of 21${\circ}C$ isothermal line in the East Sea. The red tides that initially bloomed at the coast of Pohang on September 21, 1995 moved to the coast of Uljin on September 26, 1995. The skipped appearance of the red tides in the areas between Pohang and Uljin was due to the East Korean Warm Current, which was moving offshore from Pohang to approach to Uljin. The cold water which was formed by tidal front in the western coast of the South Sea and by upwelling water from deep layer in the southeastern coast of the Korean peninsula played a role in blocking the spreading of red tides during summer season in 1997 and 1998. In conclusion, the distribution of red tides appeared to be dependent on the initial water temperature at red tides bloom. The SST at the red tides varied from 21${\circ}C$ to 25${\circ}C$; 21${\circ}C$, 23${\circ}C$, 24 and 24-25${\circ}C$ in 1995, 1996, 1997 and 1998, respectively.

  • PDF

Annual Variations(2001-2010) of Phytoplankton Standing Stocks in Saemangeum Water Region (새만금 수역 식물플랑크톤 현존량의 경년(2001-2010) 변화)

  • Yeo, Hwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4326-4333
    • /
    • 2012
  • Phytoplankton standing stocks had been researched in Saemangeum water region from 2001 to 2010 belong to the construction period of Saemangeum dike. The big change of phytoplankton standing stocks was shown, reaching 57 - 85,219 cells/ml according to the sampling seasons and stations. Inside of Saemangeum lake, a flux of fresh water and sea water made the phytoplankton standing stocks changed spatiotemporally. Meanwhile, the water bloom was frequent with continuously high standing stocks of fresh water stations and the standing stocks outside of the dike have been normal. In the long-term point of view, the standing stock did not show a big change comparing to the before and after of closing the dike(April, 2006).

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.