• Title/Summary/Keyword: water blending

Search Result 228, Processing Time 0.025 seconds

Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes

  • Liu, Q.F.;Li, F.Z.;Guo, Y.Q.;Dong, Y.L.;Liu, J.Y.;Shao, H.B.;Fu, Z.M.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.417-431
    • /
    • 2016
  • Poly(vinylidene fluoride) (PVDF) powder was treated with aqueous sodium hydroxide to obtain partially defluorinated fluoropolymers with expected properties such as improving hydrophilicity and fouling resistance. Raman spectrum and FT-IR results confirmed the existence of conjugated carbon double bonds after alkaline treatment. As the concentration increased, the degree of defluorination increased. The morphology and structure of membranes were examined. The permeation performance was investigated. The results showed that membrane's hydrophilicity increased with increase of the percentage of alkaline treated PVDF powder. Moreover, in terms of the water contact angle, it decreased from $92^{\circ}$ to a minimum of $68^{\circ}$; while water up take increased from 128 to 138%. Fluxof pure water and the cleaning efficiency increased with the increase of alkaline treated PVDF powder. The fouling potential also decreased with the increase of the percentage of alkaline treated PVDF powder. The reason that makes blending PVDF show different characteristics because of partial defluorination, which led the formation of conjugated C = C bonds and the inclusion of oxygen functionalities. The polyene structure followed by hydroxide attack to yield hydroxyl and carbonyl groups. Therefore, the hydrophilicity of blending membrane was improved. The SEM and porosity measurements showed that no obvious variations of the pore dimensions and structures for blend membranes were observed. Mechanical tests suggest that the high content of the alkaline treated PVDF result in membranes with less tolerance of tensile stress and higher brittleness. TGA results exhibited that the blend of alkaline treated PVDF did not change membrane thermal stability.

Physical Properties of Rigid Polyurethane Foams Prepared by Co-Blowing Agents (Co-blowing agent에 따른 경질 폴리우레탄 폼의 물성 변화 연구)

  • Kim Sang Bum;Koh Sung Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.1-7
    • /
    • 2004
  • The physical properties of rigid polyurethane foam(PUF) synthesized using various types of blowing agents such as water, HFC-365mfc, HFC-245fa, HCFC-l4lb, CFC-11 and n-pentane were studied. The blending effect of blowing agents were also studied. The thermal conductivity, reaction rate, and cell morphology of the PUF with various blending ratio of blowing agents were investigated. The PUF blown by water shows the highest compressive strength among other single blowing agents. The thermal conductivity of PUFs blown by HFC-245fa and HFC-365mfc are close to that of PUFs blown by CFC-11. When HFC-365mfc was mixed with HFC-245fa(30mo1e$\%$) as coblowing agent, the mechanical property shows the highest value among other coblowing agents. It is that the thermal conductivity of PUFs depends on cell size of PUFs as well as thermal conductivity of blowing agent in gaseous form.

  • PDF

Effects of Eggshell Powder on Clubroot Disease Control and the Growth of Chinese Cabbage (달걀껍질이 배추의 생육과 무사마귀병 발병억제에 미치는 영향)

  • Kim, Byeong-Kwan;Lim, Tae-Heon;Kim, Youn-Hee;Park, Seok-Hwan;Lee, Sang-Hwa;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • Blending of eggshell powder into soil as ratio of 1:5, 1:10, 1:15, 1:20, and 1:25 did not affect seed germination rates of several crops including Chinese cabbage. The blending increased pH of distilled water and decreased the viability of resting spores of Plasmodiophora hrassicae. The ratio of non-viable resting spores in eggshell-blending water was over five times higher than in distilled water of the same pH. Chinese cabbage (cv. 'Norangbom') grew more in eggshell-blended soil than in non-treated soil, but other crops grew less. Leaf numbers and above ground growth of Norangbom increased to around 150% and 470%, respectively, in soil blended with $1:20{\sim}1:15$ of eggshell powder. Even though the optimum sizes of eggshell powder were $0.8{\sim}2.0mm$ for growth and smaller than 0.4 mm for inhibition of clubroot disease of Chinese cabbage, there was no statistical difference among the sizes. Soil pH was above 8.0 in all eggshell treatments without any statistical difference among them. Eggshell powder blending to 1:20 showed lower control efficacy, 58.5%, than registered fungicide 'Hokanna (flusulfamide)', 78.5%. However, Chinese cabbage of that blending ratio recorded the highest growth among the treatments. Therefore, blending of eggshell powder into clubroot-contaminated soil may make culture of Chinese cabbage possible by growth-increasing, even though eggshell powder could not inhibit clubroot disease entirely.

Preparation of Durable Softening Water Repellents by Blends of Activated Polyethylene / Wax / Acrylic Copolymer(II);Water-Repellent Finish of Cotton Fabrics (활성화 폴리에틸렌 / 왁스 / 아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구(II);면직물에의 발수가공)

  • Kim, Sung-Gea;Shin, Jae-Hyun;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 1996
  • The procedure to prepare an acrylic emulsion water repellents by blending of arcylic copolymer, activated polyethylene, wax, and emulsifiers was published in the previous paper. After the treatment of the prepared water repellents on a cotton fabrics with and without textile finishing resin, washability, contact angle, tearing strength, and crease recovery were tested. As the result, there were remarkable improvements in physical properties. Proper curing temperature of the synthesized water repellents impellents was $150^{\circ}C$ : proper using concentration was 5wt% : sodium acetate was the best catalyst for water repellents among the used, and proper concentration was 1.0wt%.

Studies on the Coating Structure and Printability of Coated Paper(III) - Effect of the interaction with pigments and ionic latices on the property of coated paper - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(제3보) - 도공용 안료와 이온성 라텍스와의 상호작용이 도공지 품질에 미치는 영향 -)

  • Park, Kyu-Jae;Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-81
    • /
    • 1999
  • This paper was intended to evaluate the effect of the blending condition of pigments on the packing structure of coating color and the interaction between pigments and latices on the optical and interior properties of coated paper. It has been studied many ways to modify the coating structure to induce the interaction among coating components as followings ; 1) to use dispersant for pigment, 2) to control the charge density and the type of surface charge of latex, 3) to support the water retention by adding water retention agent or flow modifier. This paper was performed through the introduction of interaction between pigments which were two kinds of clays and one precipitated calcium carbonate(PCC) and ionic latices of which anionic and amphoteric respectively under the certain blending condition of pigments where their blending ratio of clays to calcium carbonate was 70pph to 30pph. The reason is that packing volume of pigments was highest in that region and thixotropical behavior appears in measuring rheology of coating color. We measured the properties of coating color, interaction with pigments and latex, and properties of coated paper and its printability. As a results, we could find out that amphoteric latex had a great influence on the interaction with pigments, especially clays, no matter what grade and also affected the coating structure significantly in case that this blending condition was 70(clays) to 30(PCC). It produced a powerful effect on the forming of bulky and smooth coating structure and in turn improved the printability of coated paper.

  • PDF

Study on blending radar and numerical rainfall prediction to improve hydroelectric dam inflow forecasts accuracy (발전용 댐 유입량 예측 정확도 향상을 위한 레이더와 수치예보 예측강우 병합기법 연구)

  • Seong Sim Yoon;Hongjoon Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.112-112
    • /
    • 2023
  • 발전용댐의 댐 유입량 예측 및 운영을 위해서 (주)한국수력원자력에서는 수자원통합 운영시스템(Water resources Integrated System, WIOS)을 운영 중에 있다. 해당 시스템에서는 댐 유입량을 예측하기 위해서 기상청 수치예보모델 중 하나인 국지예보모델(Local Data Assimilation and Prediction System, LDAPS)의 예측강우를 수문모형의 입력자료로 활용하고 있으며, 레이더 기반의 초단시간 강우예측 기법을 자체 개발 중에 있다. 기상청 국지예보모델은 강우의 on/off에 대한 정확도는 90%를 상회할 만큼 높으나 정량적인 강우량의 정확도는 매우 낮고, 레이더 기반의 초단시간 예측 강우는 선행 1~2시간 예측에서는 정량적 정확도는 높으나, 그 이후 예측성능이 급격히 떨어지는 경향을 보인다. 따라서 댐 유입량의 정량적 예측 정확도를 확보하기 위해 초단시간 모델과 국지예보모델의 강우예측 결과를 병합(blending)하는 기법을 적용하여 초기 6시간 동안의 예측 성능을 향상시켜야 한다. 본 연구에서는 선행시간 0~6시간에 대해서 병합하는 기법들을 적용하고 평가하고자 한다. 기본적으로 병합은 초단시간 예측강우와 수치예보자료 간 가중치를 통해 수행된다. 일반적으로 초기 1시간 선행시간에서 레이더 기반 예측강우는 완벽한 예측자료(외삽 관측자료의 가중치는 1.0)로 가정하며, tanh 함수를 이용하여 선행시간의 증가에 따라 가중치를 감소시키면서, 6시간 선행시간에서는 수치예보 예측강우가 완벽한 예측자료라고 가정한다. 본 연구에서는 일반적인 병합 방법 외에 병합된 예측강우에 과거 관측강우와 예측강우의 평균편이를 적용하여 보정하는 방법, 사례별 변동성이 큰 병합된 예측강우 특성을 고려하여 병합 가중치를 신뢰도에 따라 가변시키는 방법을 적용하여 평가한다. 이를 통해 댐 유입량 예측에 최적이 되는 병합기법을 선정하고자 한다.

  • PDF

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu;Aryanti, Putu T.P.;Wardani, Anita K.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.353-361
    • /
    • 2018
  • Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

Preparation and Characterization of Lignin/Chlorinated Polyvinyl Chloride Blended Fibers for Low-cost Carbon Fiber (저가 탄소섬유용 Lignin/Chlorinated Polyvinyl Chloride 블렌딩 섬유의 제조 및 특성)

  • Jo, Chaehyun;Lee, Sangoh;Kang, Dakyung;Hong, Seonghwa;Kang, Chankyu;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • In this study, lignin/chlorinated poly(vinyl chloride)(CPVC) blended fibers have been produced for the development of low-cost carbon fiber. Carbon fiber manufacturing was accomplished through stabilization and carbonization process. The lignin/CPVC blended fibers were prepared by wet spinning method. Dimethylacetamid e(DMAc) and cychlohexanone in a ratio of 5:1(wt%) was employed as co-solvent. The ratio of lignin/CPVC was prepared at 0/10, 1/9, 2/8, 3/7, 4/6, and 5/5(wt%). The spinning solution was extruded at a rate of 0.1 to 0.4ml/min according to the blending ratio. The speed of the rollers was the same for all ratios(draw ratio=1). Analysis of fiber cross-section by scanning eletron microscopy(SEM) showed that as the lignin ratio increased in the same coagulation bath and distilled water, the pore size of the spinning fiber decreased. Therefore, the highest tensile strength of the blending fibers was 6.3±1.2MPa at the 5/5 ratio. The carbon fiber also showed the best tensile strength of 120.78±2.43MPa at 5/5 ratio.

Effects of Cloud Point of Non-ionic Surfactant on Deinking Efficiency of ONP at High Blending Ratio of OMG (비이온성 계면활성제의 운점이 OMG 배합비가 증가된 폐 신문지 탈묵효율에 미치는 영향)

  • Lee, Tai Ju;Seo, Jin Ho;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.164-169
    • /
    • 2015
  • Nowadays blending ratio of OMG (old magazine) in recovered paper used for manufacturing newspaper have been increased. When large amount of OMG is consumed in newsprint mill, brightness can be improved by inorganic pigments of coating layer. On the other hand decrease in yield of deinking process will be encountered because the pigments can be removed as reject of froth flotation process. Therefore selection of the optimal deinking agent is an important. Non-ionic surfactant have been used widely in newsprint mill. Non-ionic surfactant has amphoteric characteristics. Hydrophilic group is ethylene and propylene oxide that can induce hydrogen bonding with water molecules. In this regard, cloud point is an important parameter in order to control efficiency of deinking process because hydration of the hydrophobic group can be varied according to temperature of a system. In this study, deinking properties of ONP at high blending ratio of OMG was analyzed according to cloud points of non-ionic surfactants. $L^*$, $a^*$, $b^*$, brightness and effective residual ink concentration did not affected by the change of cloud points. Especially, flotation reject decreased significantly according to increase in cloud point of the non-ionic surfactant. Consequently, when a nonionic surfactant having a cloud point higher than the temperature of the system is used, properties of the deinked pulp can be maintained and yield of deinking process can be improved.