• Title/Summary/Keyword: water area

Search Result 11,353, Processing Time 0.036 seconds

Assessing the Benefits of Water Quality Improvements Using Contingent Valuation Method: Case Study of the Kumgang Area (가상 가치 접근법을 이용한 수질 개선 사업의 편익 측정: 금강 유역 사례)

  • Cho, Hong-Jin;Lee, Byoung-Nam;Kim, Ji-Soo
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.209-218
    • /
    • 1998
  • This paper is concerned with the assessment of benefits from water quality improvements. The contingent valuation method (CVM) is employed to directly measure the value of the project for the improvement of the water pollution in the Kumgang area. The perceived value of the improved water quality is investigated by using questionnaires to those concerned living near water-polluted area. The questionnaire includes such questions as the amount to willingly pay, the motivation to pay, the reasons of rejecting the payment, and some socio-economic data. The results of the survey show that (1) non-use value of the environmental goods is perceived to be more important than use-value of the environmental goods; (2) "willingness to pay" for the improved water quality varies according to the degree of educational level. income level and ages; (3) the resistance to pay for the project comes from the "polluter's pay principle".

  • PDF

3-D Dynamic groundwater-river interaction modeling incorporating climate variability and future water demand

  • Hong, Yoon-Seok Timothy;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.67-74
    • /
    • 2008
  • The regional-scale transient groundwater-river interaction model is developed to gain a better understanding of the regional-scale relationships and interactions between groundwater and river system and quantify the residual river flow after groundwater abstraction from the aquifers with climate variability in the Waimea Plains, New Zealand. The effect of groundwater abstraction and climate variability on river flows is evaluated by calculating river flows at the downstream area for three different drought years (a 1 in 10 drought year, 1 in 20 drought year, and 1 in 24 drought year) and an average year with metered water abstraction data. The effect of future water demand (50 year projection) on river flows is also evaluated. A significant increase in the occurrence of zero flow, or very low flow of 100 L/sec at the downstream area is predicted due to large groundwater abstraction increase with climate variability. Modeling results shows the necessity of establishing dynamic cutback scenarios of water usage to users over the period of drought conditions considering different climate variability from current allocation limit to reduce the occurrence of low flow conditions at the downstream area.

  • PDF

Anhui Water Resource Situation and General Plan

  • Yiqun, Hou
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.67-73
    • /
    • 2007
  • Anhui Province, with a total north-south length of 570km and an east-west width of 450km and a total area of 139.6 thousand km2, accounts for 1.45% of China's total area. The landform and land feature of Anhui Province is diverse, and generally it can be divided into 5 natural regions: (1) Huaibei Plain; (2) Jianghuai Hillocks; (3) Dabie Mountains in the West of Anhui Province; (4) Yanjiang Plain, (5) Mountain Area of southern Anhui Province. Anhui Province is located in the transitional zone of warm and humid zone and subtropical zone, and its mean annual precipitation is 800-1800mm. The province, which has diverse climate, multiple land forms and many rivers and lakes, passes three basins (Huaihe River, Yangtze River and Xin'an River) and has large differences in the time distribution and regional distribution of water resource. Therefore, the development and usage conditions of the water resource in different regions are different.

  • PDF

A Study on tHe Utilization of Irrigation Water for Greenhouse Farming (시설농업의 용수 이용실태 조사분석)

  • 이남호;황한철
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.2
    • /
    • pp.96-102
    • /
    • 1998
  • A field survey with interview was conducted to get information on the irrigation water usage for greenhouse farming. Three study regions were selected which represent geographical characteristics such as ,neighboring urban area, flat-field area, and mountainous area. Several items were investigated and analysed such as location of greenhouse, type of irrigation water resources, type of irrigation method used, way to decide intake facility size, farmers'satisfaction on intake facilities performance and water quality, and needs for water quality test. It was found that greenhouse farmers did not take an advantage of technical assistances. Proper criteria or guidelines for selection and operation of water intake facilities were not available.

  • PDF

Cooling Performance Analysis of Water-Cooled Large Area Magnetron Sputtering System (대면적 마그네트론 스퍼터링 증착장비의 수냉시스템 방열성능 해석)

  • Kim, Kyoung-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • In a large area magnetron sputtering system, which is under the influence of high heat load from the plasma, it is necessary to use the effective water cooling in order to maintain the proper deposition performance and the economic use of target materials. A series of three-dimensional numerical simulations are carried out on the simplified model of the large area magnetron sputtering system with the cooling plate that includes the U-shaped water channel. The analysis is focused on the effects of water channel geometry, cooling water flowrate, thermal conductivity of target material, and the degree of target erosion on the cooling performance of cooling plate, which is represented by the temperature distribution of target material.

The Relationship between the Dragonfly Diversity and the Environmental Factors in the Juam Wetland (주남습지에 서식하는 잠자리와 주변환경과의 관계)

  • Kim, Ji-Suk;Lee, Soo-Dong;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.66-76
    • /
    • 2018
  • This study surveyed the species and population of dragonflies in 20 study sites in the Junam wetland in May and July 2015 to investigate the relationship between the dragonflies and the inhabited environment. We measured the environmental factors such as the area of emergent plants, the area of floating and floating-leaved plants, the area of water surface, the area of water plants, and the nearby land-use type and analyzed the relationship to the dragonfly species, population, and diversity index. We found 757 dragonflies belonging to 21 species of 6 families. The area of floating and floating-leaved plants and the area of water surface affected the species diversity. The area of floating and floating-leaved plants and the area of surface water, in particular, showed the positive correlation with the species richness and the dominance value, respectively. The area of water surface showed the negative correlations with Shannon's diversity index and evenness. Among the type of surrounding land-uses, the dry fields and orchards showed significantly lower average species richness than wetlands. Among the species, Cercion calamorum and Crocothemis servilia were positively correlated with floating and floating-leaved plants. Cercion v-nigrum and Epophthalmia elegans were positively correlated with the area of water surface, and Ischnura asiatica and Ceriagrion nipponicum were negatively correlated. The recent uncontrolled proliferation of lotus colony in the Junam wetland is likely to affect greatly the species composition of dragonflies which have a close relationship with plant species.

Effect of Turbid Water on Fishes in the Streams of Imha Reservoir (임하호 유입지천에 서식하는 어류에 미치는 탁수의 영향)

  • Yu, Sam-Hwan;Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1410-1416
    • /
    • 2009
  • The present study aims to examine the effect of turbid water on fishes in streams which branch into a turbid water area (Yeongyang-gun) and a non-turbid water area (Cheongsong-gun), and finally flow into the Imha reservoir. In a comparison of water quality, the chemical status of the water showed higher pH, DO and SS in the turbid water area than in the non-turbid water area. Also, high density of clay minerals such as vermiculite (V) and illite (I), which is from clay mineral leakage during rainfall, was detected in turbid water, resulting in an increase of turbidity. Fishes inhabiting the turbid water showed irregular spaces in gill lamella, cell separation, edema, and clubbing in epithelial tissues. Also, the gill surface showed roughness and plenty of muddy debris substances inside the gills. The Bowman's space was expanded because of contraction of the glomerulus in the Bowman's space of the kidney tissues. Antioxidant enzymes such as SOD, CAT, GPX, and GST showed higher activities in the specific tissues, muscles and kidney, of fishes living in turbid water than in the non-turbid area. We suggested that; first, the antioxidant activities were increased due to removal of harmful radicals generated in fish bodies in the turbid water area, second, long-time exposure of these histological changes in the tissues might have induced secondary lesion accompanying the inaccurate physiological constancy of fishes.

Water Quality Management of Agricultural Reservoirs Considering Effective Water Depth (농업용 저수지의 유효수심과 수질관리방안)

  • Kim, Hyung-Joong;Kim, Ho-Il
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • Water quality data for 10 years (2000~2009) from about 826 reservoirs that are operated as a agricultural water quality survey network were analyzed in order to seek water quality management plan based on physical and chemical characteristics of agricultural reservoirs. The 95% reservoirs that exceed agricultural water quality standard of Chl-a (35mg/ $m^3$) had effective water depth shallower than 5m. The reason was that the reservoirs had more inflows of nutrient salts from the watershed, bigger surface water area of weak structure to algae occurrence. As the reservoirs of effective water depth shallower than 5m cover 49% of benefited area for irrigation, it is critical for agricultural water quality management of the reservoirs. The water quality of reservoir with shallower than 5m effective water depth was worse than reservoir with deeper than 5m effective water depth. Therefore, it is desirable that effective water depth of reservoirs make more than 5m for water quality management by building the bank higher and dredging the bottom of reservoirs.

  • PDF

Model of Water, Energy and Waste Management for Development of Eco-Innovation Park ; A Case Study of Center for Research of Science and Technology "PUSPIPTEK," South Tangerang City, Indonesia

  • Setiawati, Sri;Alikodra, Hadi;Pramudya, Bambang;Dharmawan, Arya Hadi
    • World Technopolis Review
    • /
    • v.3 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Center for Research of Science and Technology ("PUSPIPTEK") has 460 hectares land area, still maintained as a green area with more than 30% green space. There are 47 centers for research and testing technology, technology-based industries, and as well as public supporting facilities in PUSPIPTEK area. Based on the concepts developed to make this area as an ecological region, PUSPIPTEK can be seen as a model of eco-innovation. The purpose of this research is to develop a model of water, energy and waste management with eco-innovation concept. As a new approach in addressing environmental degradation and maintaining the sustainability of ecosystem, studies related to eco-innovation policy that combines the management of water, energy and waste in the region has not been done. In order to achieve the objectives of the research, a series of techniques for collecting data on PUSPIPTEK existing conditions will be carried out, which includes utilities data (water, electricity, sewage) and master plan of this area. The savings over the implementation of the concept of eco-innovation in water, energy, and waste management were calculated and analyzed using quatitative methods. The amount of cost savings and feasibility were then calculated. Eco innovation in water management among other innovations include the provision of alternative sources of water, overflow of rain water and water environments utilization, and use of gravity to replace the pumping function. Eco-innovation in energy management innovations include the use of LED and solar cell for air conditioning. Eco-innovation in waste management includes methods of composting for organic waste management. The research results: (1) The savings that can be achieved with the implementation of eco innovation in the water management is Rp. 3,032,640 daily, or Rp.1,106,913,600 annually; (2) The savings derived from the implementation of eco innovation through replacement of central AC to AC LiBr Solar Powered will be saved Rp.1,933,992,990 annually and the use of LED lights in the Public street lighting PUSPIPTEK saved Rp.163,454,433 annually; (3) Application of eco innovation in waste management will be able to raise awareness of the environment by sorting organic, inorganic and plastic waste. Composting and plastic waste obtained from the sale revenue of Rp. 44,016,000 per year; (4) Overall, implementation of the eco-innovation system in PUSPIPTEK area can saves Rp. 3,248,377,023 per year, compared to the existing system; and (5)The savings are obtained with implementation of eco-innovation is considered as income. Analysis of the feasibility of the implementation of eco-innovation in water, energy, and waste management in PUSPIPTEK give NPV at a 15% discount factor in Rp. 3,895,228,761; 23.20% of IRR and 4.48 years of PBP. Thus the model of eco-innovation in the area PUSPIPTEK is feasible to implement.

Geochemical Studies of the $CO_2$-rich water in the Chojeong area I. Water Chemistry (초정지역 탄산수의 지화학적 연구 I. 수리화학)

  • 고용권;김천수;배대석;김건영;정형재
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.159-170
    • /
    • 1999
  • The hydrogeochemical study on the $CO_2$-rich water in the Chojeong area was carried out. The $CO_2$-rich water of Ca-$HCO_3$type is characterized by low pH (5.0~5.8). high $CO_2$concentration ($Pco_2$$10^{0.31}$atm) and high TDS. The water chemistry indicates that the $CO_2$-rich water was probably evolved by the local suppy of deep seated $CO_2$gas resulting in the enhanced water/rock (granite) interaction under low pH conditions. High $NO_3$concentration indicates that the $CO_2$water was mixed and diluted with low $CO_2$groundwater in the vicinity of the area, in which the extensive groundwater abstraction occurred during the past years. The evoiution of the $CO_2$-rich water in the Chojeong area for the process of $CO_2$injection water/rock interaction and mixing processes was thermodynamically simulated by PHREEQC. Although the simulation was limited to water/plagioclase interaction, the results show the feasible explanation about the observed trend of pH and Ca and Na concentrations of the $CO_2$-rich water.

  • PDF