• Title/Summary/Keyword: wastewater sludge

Search Result 1,077, Processing Time 0.019 seconds

Determination of Dosage of Flocculants for Paper Wastewater Treatment by Measuring Floc Strength (제지폐수의 플럭강도 측정에 따른 고분자응집제 주입량 결정)

  • Cho, Jun-Hyung;Kang, Mee-Ran
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.2
    • /
    • pp.119-122
    • /
    • 2007
  • Actually, about 45% of total costs for wastewater treatment in a papermaking mill is spent for sludge disposal and the cost of chemicals used to improve the dewaterability of sludge takes much part of it. In order to reduce sludge disposal cost and to improve the efficiency of sludge treatment, it is necessary to minimize the amount of water contained within the sludge and hence to improve the dewaterability of the sludge. The objective of this study was to elucidate the way of improving the dewaterability of sludge. Three types of wastewater from a tissue paper mill, a printing paper mill and a newsprint mill were used and two types of high molecular weight flocculants (anionic PAM and cationic PAM) were used to treat the wastewater. Dewaterability of sludge was evaluated by measuring floc strength.

  • PDF

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

Composting Chemical Treated Hog Wastewater Excess Sludge Amended with Sawdust and Compost Biofiltration (화학적처리 양돈폐수 잉여오니와 톱밥 혼합물 퇴비화 및 퇴비탈취처리)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • The effects of turning frequency were examined on the efficiency of composting lime treated excess sludge amended with sawdust from the activated sludge process after a liquid/solids separation process. The raw and excess sludge from the activated sludge process associated with the hog wastewater treatment system is a significant problem and composting is an effective method far reducing the pollution potential of hog wastewater sludge. The coagulant used sludge composting and ammonia emissions from composting are not well established. The effect of compost properties such as high total carbon, C/N ratio and pH value on performance of composting sludge and biofiltration of ammonia from composting process were investigated. The ammonia emission was not significantly increased during composting. The ammonia concentrations of the exhaust air of composter were ranged from 0.5 and 7 ppm about 12 days after composting. The performance of the hog wastewater sludge composting was the most sensitive to chemical treated sludge properties such as high total carbon and high C/N ratio of the initial compost mixes. Temperature in compost and ammonia emission were not greatly affected by the turning frequency.

  • PDF

Effects of ECP (exocellular polymers) Changes to the Dewaterability and Settlability of Wastewater Sludge Pretreated by Acid and Ultrasonic (하수슬러지의 산과 초음파 처리에 따른 ECP(exocellular polymers)의 거동이 탈수성과 침강성에 미치는 영향)

  • Hwang, Sun-Jin;Jeong, Kyu-Ho;Whang, Gye-Dae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.733-740
    • /
    • 2002
  • The effects on dewaterability and settlability of wastewater sludge according to acid and ultrasonic pretreatment which was expected to change ECP (exocellular polymers) compounds in the sludge and bulk solution was investigated. Though ECP which attached to the sludge could stimulate coagulation of sludge particles by bridging effect, but ECP in the bulk solution deteriorated dewaterability and settlability of the sludge on the contrary. That is as the pH of the solution was decreased to 3 gradually by acid treatment, proportionally ECP in the bulk solution was attached to the sludge flocs and resulted in improvement of dewaterability and settlability of the sludge. In case of ultrasonic pretreatment, with proportional to the intensity and duration of ultrasonic application, ECP was detached and extracted from sludge flocs and these phenomena deteriorated dewaterability and settlability. Also because of the increasement of minute sludge particles according to ultrasonic, dewaterability became so much the worse.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

Simulations of a System Dynamics Model for Operations and Maintenance of Activated-Sludge Wastewater Treatment Plants (활성슬러지 하수처리시설 운영 및 유지관리를 위한 시스템다이내믹스 모델의 모의에 관한 연구)

  • Park, Suwan;Kim, Bong Jae;Jun, Hwan Don;Kim, In Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.905-912
    • /
    • 2006
  • In this paper, simulation methods of the system dynamics model developed by Das et al. (1997) for activated-sludge wastewater treatment plants are illustrated in an attempt to determine the operating rules and the policies related to capacity expansion of an activated-sludge wastewater treatment plant. For existing conditions, the analyses were performed by varying activated-sludge return rate to observe changes in effluent water quality and treatment efficiency. The effluent water quality is also analyzed for various average daily inflow conditions and activated-sludge return rates. As a result, without expanding the aeration tank, maximum average daily inflow that can satisfy the effluent water quality standard of BOD $0.02kg/m^3$ was determined as $2,840m^3/hr$, subject to 100% of activated-sludge return rate while other factors remain constant. When the activated-sludge return rate is less than 100%, expansion of the aeration tank is necessary and minimum sizes of the aeration tank to satisfy the effluent water quality standard were determined for various activated-sludge return rates. In addition, the total operating and maintenance as well as unit treatment cost regression equations for activated-sludge wastewater treatment plants are suggested by using the cost data that are obtained from Water and Wastewater Division, Ministry of Environment. The regression analyses showed that the economies of scale phenomena exist in the operating and maintenance costs of activated-sludge wastewater treatment plants.

A Study on Agricultural the Treatment of Organic Phosphorous Agricultural Pesticides Wastewater by the Activated Sludge Process (활성슬러지공정에 의한 유기인계 농약폐수처리)

  • 최택열;최규철
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.36-41
    • /
    • 1995
  • In order to treat effectively various type of wastewater discharged from the manufacture factory of organic phosphorous agricultural pesticides by the activated sludge process. The acclimation test of sludge was carried out by the dilution of completely mixed raw wastewater. The results of experiment were obstained as follows. 1. The moderate dilution rate of mixed raw wastewater was founded to about 30 times. 2. The available range of BOD-SS loading was 0.1~0.15 $kg\cdot BOD/kg\cdot SS\cdot day$ and it was similar to the case of extended aeration activated sludge process. 3. After the acclimation of activated sludge, the concentration of MLSS was 2000 mg/L, removal efficiency of BOD more than 90%, and SVI 100, respectively. 4. The oxygen respiratory rate of acclimated sludge was $47 mg\cdot O_2/g\cdot hr$ and this was increased about 5 times than $10 mg\cdot O_2/g\cdot hr$ of ordinary sludge.

  • PDF

Uptake of Wastewater Organic Matter to Activated Sludge

  • Nam, Se-Yong;Kim, In-Bae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.493-496
    • /
    • 2007
  • The influences of contact time and ratio of food to microorganism (F/M) on uptake of wastewater organic matter in a short contact process were investigated using three activated sludge batch reactors fed with synthetic wastewater, sewage and livestock wastewater. About 64% of influent soluble chemical oxygen demand (SCOD) in the synthetic wastewater and 61% of SCOD in the sewage and 43% of SCOD in the diluted livestock wastewater were adsorbed into the activated sludge within 30 min. The specific mass of organic matter uptaken in the synthetic wastewater was 55 mg SCOD/g mixed liquor suspended solids (MLSS). In the same manner, 20 and 14 mg SCOD/g MLSS were calculated as the values in the sewage and livestock wastewater, respectively.

Disintegration of Waste Activated Sludge by Acid Hydrolysis (산 가수분해에 의한 폐활성슬러지 분해)

  • Patchareeya Jaipakdee;Yeonghee Ahn
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.82-90
    • /
    • 2023
  • Biological process is used worldwide to treat domestic and industrial wastewater. The process generally uses a mixed microbial culture of sludge. The growth of microorganisms in the sludge produces excess sludge from the wastewater treatment process. Some of the excess sludge is recycled as inoculum for wastewater treatment, but the rest is removed as waste from the process. As wastewater production is increasing worldwide every year, the number of wastewater treatment plants (WWTPs) is also in- creasing, resulting in the generation of large amount of waste sludge. The increasing amount of waste sludge from WWTPs has led to concerns about its management. Sludge disposal has been reported to account for 50~60% of the total operating costs of a WWTP. Sludge disintegration is a new technology that can minimize volume of waste sludge and recover useful components (e.g., P, N, and soluble organic compounds) from it. Various methods of sludge disintegration have been developed based on physical, chemical, and biological treatments or combinations of these. In this review, we focus on sludge disintegration by acid hydrolysis, which is less studied among sludge disintegration methods. Such information can be useful in the development and implementation of a new technology for better sludge treatment.

Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor (혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리)

  • 박영식;문정현
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).